Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T02:42:32.726Z Has data issue: false hasContentIssue false

Self-adaptive mesh refinement for the computation of steady, compressible, viscous flows

Published online by Cambridge University Press:  04 July 2016

J. Fischer*
Affiliation:
Cray Research, Germany

Summary

An adaptive method for the computation of steady, viscous compressible flows over a wide range of Reynolds and Mach numbers is presented. The method is based on a well-proven scheme for the solution of the compressible Reynolds-averaged Navier-Stokes equations and employs the flexible AMR-grid structure for the adaptation of discretisation to the computed flow. The basic numerical scheme and the grid structure are reviewed and the sensors employed for the detection of the main flow phenomena are presented. Special attention is given to several flows computed with the adaptive method. The numerical results are partially compared to experimental data and generally a good agreement is observed. It is also recognised that, with the present adaptive method, flow features can be computed with high resolution using greatly reduced computing power. At this time, the method is limited to the simulation of two-dimensional flows, with the extension to three space dimensions currently under development.

Übersicht

Übersicht

Es wird ein adaptives Verfahren zur Berechnung stationärer reibungsbehafteter kompressibler Strömungen in einem weiten Mach- und Reynoldszahlbereich vorgestellt. Das Verfahren basiert auf einem bewährten Schema zur Lösung der kompressiblen Reynolds-gemittelten Navier-Stokesschen Gleichungen und verwendet die flexible AMR-Gitterstruktur zur Anpassung der Diskretisierung an die sich ergebende Strömung. Das zugrundeliegende Basisintegrationsverfahren und die Netzstruktur werden kurz besprochen und die zur Lokalisierung der wichtigsten Strömungsphänomene verwendeten Sensoren vorgestellt. Das Hauptaugenmerk wird auf verschiedene Strömungen gerichtet, welche mit dem adaptiven Verfahren berechnet wurden. Die numerischen Ergebnisse werden teilweise mit experimentell ermittelten Werten verglichen. Dabei kann überwiegend eine gute Übereinstimmung festgestellt werden. Es ist ebenfalls deutlich zu erkennen, daß mit dem vorliegenden adaptiven Verfahren einzelne Strömungsphänomene mit hoher Auflösung mit stark reduziertem Einsatz von Computerressourcen numerisch ermittelt werden können. Momentan ist das Verfahren auf die numerische Berechnung zweidimensionaler Strömungen beschränkt, es wird jedoch zur Zeit auf drei Raumdimensionen erweitert.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1993 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berger, M.J. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, PhD thesis, Computer Science Dept, Stanford University, 1982.Google Scholar
2. Quirk, J.J. An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, PhD Thesis, College of Aeronautics, Cranfield Institute of Technology, 1991.Google Scholar
3. Schmatz, M.A. Hypersonic three-dimensional Navier-Stokes calculations for equilibrium gas, AIAA paper 89-2183, 1989.Google Scholar
4. Schmatz, M.A. NSFLEX-an implicit relaxation method for the Navier-Stokes equations for a wide range of Mach numbers, Proc 5th GAMM-Seminar on the numerical treatment of the Navier-Stokes equations, NNFM 30, Vieweg, Braunschweig-Wiesbaden, 1990.Google Scholar
5. Fischer, J. and Hirschel, E.H. Adaptive Navier-Stokes calculations using a combination of an implicit finite-volume method with a hierarchically ordered grid structure. In: Flow Simulation With High Performance Computers I, DFG priority research program, Results 1989-1992, NNFM 38, Vieweg, Braunschweig-Wiesbaden. 1993, pp 279294.Google Scholar
6. Hirschel, E.H., Stock, H.W. and Cousteix, J. Current turbulence modelling in aircraft design, invited lecture at the 2nd Int Symp on Eng Turb Modeling and Measurements, 31 May-2 June, Florence, 1993.Google Scholar
7. Baldwin, B.S. and Lomax, H. Thin layer approximation and algebraic model for separated turbulent flows, AIAA-paper 78-0257, 1978.Google Scholar
8. Eberle, A. 3D Euler calculations using characteristic flux extrapolation, AIAA paper 85-0119, 1985.Google Scholar
9. Eberle, A., Rizzi, A. and Hirschel, E.H. Numerical solutions of the Euler equations for steady flow problems, NNFM 34, Vieweg, Braunschweig-Wiesbaden, 1992.Google Scholar
10. Steger, J.L. and Warming, R.F. Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods, J Comput Phys, 1981, 40, pp 263283.Google Scholar
11. Brenneis, A. Berechnung instationarer zwei- und dreidimensionaler Strömungen um Tragflügel mittels eines impliziten Relaxationsver- fahrens zur Lösung der Eulergleichungen, VDI-Fortschrittsbericht, Reihe 7, Strdmungstechnik, Nr. 165, 1989.Google Scholar
12. Nakahashi, K. and Deiwert, G.S. A self-adaptive grid method with applications to airfoil flow, AIAA paper 85-1525, 1985.Google Scholar
13. Tu, Y. and Thompson, J. Three-dimensional solution-adaptive grid generation in composite configurations, AIAA paper 90-0329, 1990.Google Scholar
14. Fischer, J. Selbstadaptive, lokale Netzverfeinerung fur die numerische Simulation kompressibler, reibungsbehafteter Strömungen, Dissertation Universitat Stuttgart, 1993.Google Scholar
15. Van Leer, B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J Comput Phys, 1979, 32, pp 101136.Google Scholar
16. Fischer, J. Sensors for self-adapting grid generation in viscous flow computations, Proc 9th GAMM Conf. on numerical methods in fluid mechanics, NNFM, 1992, 35, pp 365375.Google Scholar
17. Hirschel, E.H., Koc, A. and Riedelbauch, S. Hypersonic flow past radiation-cooled surfaces, AIAA-paper 91-5031, 1991.Google Scholar
18. Edney, B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock, The Aeronautical Research Institute of Sweden, Rep. 115, 1968.Google Scholar
19. Wieting, A.R. and Holden, M.S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8, AIAA paper 87-1511, 1987.Google Scholar
20. Holden, M.S., Wieting, A.R., Moselle, J.R. and Glass, C Studies of aerothermal loads generated in regions of shock-shock interaction in hypersonic fows, AIAA paper 88-0477, 1988.Google Scholar
21. Kroll, N., Gaitonde, D. and Aftosmis, M. A systematic comparative study of several high resolution schemes for complex problems in high speed flows, AIAA paper 91-0636. 1991.Google Scholar
22. Klopfer, G.H. and Yee, H.C. Viscous hypersonic shock-on-shock interaction on blunt cowl lips, AIAA paper 88-0233, 1988.Google Scholar
23. Vorozhtsov, E.V. and Yanenko, N.N. Methods for the localisation of singularities in numerical solutions of gasdynamic problems, Springer Verlag, New York-Berlin-Heidelberg, 1990.Google Scholar
24. Van Dyke, M. Perturbation methods in fluid mechanics, Parabolic Press, Stanford, 1975.Google Scholar
25. Schulte-Werning, B. Numerische Simulation und topologische Analyse der abgeldsten Strömung an einer Kugel, Dissertation TU München, 1990.Google Scholar