Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T17:06:10.094Z Has data issue: false hasContentIssue false

Some Developments in Boundary Layer Research in the Past Thirty Years

Published online by Cambridge University Press:  04 July 2016

H. Schlichting*
Affiliation:
Technical University of Braunschweig Aerodynamische Versuchsanstalt, Göttingen Institute of Aerodynamics of the Deutsche Forschungsanstalt für Luftfahrt, Braunschweig

Summary

Boundary layer theory is the cornerstone of our knowledge of the flow of air and other fluids of small viscosity under circumstances of interest in many engineering applications, especially also in aeronautics. Many complex problems in aerodynamics, as for instance the problem of skin friction, which was theoretically attacked very early by F. W. Lanchester, have been clarified by studying the flow within the boundary layer and its effects on the general flow around the body.

Research work on boundary layers, as started by Prandtl in 1904. was for the first twenty years—up to Prandtl's Wilbur Wright Memorial Lecture to the Royal Aeronautical Society in 1927—almost entirely restricted to Prandtl's Institute at Göttingen. But since about 1930 boundary layer theory has been generally accepted, and in the past thirty years there has been an almost exponential rise of the number of contributors to its further development.

The author tries to trace certain lines, along which this important branch of modern fluid dynamics has developed in the past thirty years. In this connection the following topics are treated to some extent:

  1. I. Transition from laminar to turbulent flow.

  2. II. Boundary layer control for high lift and low drag of aerofoils.

  3. III. Aerodynamic heating at high speed (high Mach numbers).

  4. IV. Boundary layer efff cts on swept wings and on rotating bodies.

I. The theoretical investigations of the problem of transition start from Reynolds' and Lord Rayleigh's hypothesis of the instability of laminar flow. After many unsuccessful attempts Tollmien, 1930, finally succeeded in calculating the critical Reynolds number for the boundary layer on a flat plate. More than ten years later Tollmien's stability theory was completely confirmed by very careful experiments of Dryden and his co-workers.

II. After many wind tunnel experiments the investigations of boundary layer control for high lift of aerofoils led to the construction of two aeroplanes with boundary layer suction at the aerodynamische versuchsanstalt gottingen, in 1938, which were quite successful. later on, also, a considerable reduction of the skin friction of aerofoils was obtained with the advent of the laminar flow aerofoil.

III. In flow at high Mach numbers the velocity boundary layer is accompanied by a thermal boundary layer which is caused by frictional heating. The large increase in the temperature of a solid surface in a high speed stream which can be calculated from boundary layer theory only, poses a serious problem to aeronautical engineers (“thermal barrier”).

IV. The aerodynamic characteristics of swept wings and Delta wings are largely governed by the behaviour of their boundary layer. Some of the draw-backs of such wing plan forms can be remedied by boundary layer control, as for instance by a “boundary layer fence.” For turbo-machines the influence of the centrifugal forces on the boundary layer plays an important role for their aerodynamic coefficients.

Type
The Third Lanchester Memorial Lecture
Copyright
Copyright © Royal Aeronautical Society 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.von Kármán, TH. (1957), First Lanchester Memorial Lecture: Lanchester's Contributions to the Theory of Flight and Operational Research. Journal of the Royal Aeronautical Society, 62, pp. 8093, February 1958.Google Scholar
2.Collar, A. R. (1958). Second Lanchester Memorial Lec ture: Aeroelasticity—Retrospect and Prospect. Journal of the Royal Aeronautical Society, 63, pp. 115, January 1959.CrossRefGoogle Scholar
3.Prandtl, L. (1927). The Generation of Vortices in Fluids of Small Viscosity. 15th Wilbur Wright Memorial Lecture. Journal of the Royal Aeronautical Society, 31, p. 720, 1927. See also: Die Entstehung von Wirbeln in einer Flüssigkeit mit kleiner Reibung. Zeitschr. Flugtechn. Motorluftsch. 18, S. 489-496, 1927.Google Scholar
4.Prandtl, L. (1904). Ueber Fliissigkeitsbewegung bei sehr kleiner Reibung. Proceedings of the Third International Mathematics Congress, Heidelberg, 1904. Reprinted in Vier Ahhandlungen zu Hydro-und Aerodynamik, Göttingen, 1927, N.A.C.A. Tech. Memo 452, 1928.Google Scholar
5.Lanchester, F. W. (1936). The Part Played by Skin Friction in Aeronautics. Journal of the Royal Aeronautical Society, Vol. 41, pp. 68131, 1937.Google Scholar
6.Prandtl, L. (1935). The Mechanics of Viscous Fluids. In Durand, W. F., Aerodynamic Theory, 111, pp. 34208, 1935.Google Scholar
7.Dryden, H. L. (1955). Fifty Years of Boundary Layer Theory and Experiment. Sciences, 121, pp. 375380, 1955.Google Scholar
8.Schlichting, H. (1951). Grenzschicht-Theorie. 1st ed. Karlsruhe, 1951, 3rd ed., 1958. English translation by Kestin, J.: Boundary Layer Theory, London and New York, 1955.Google Scholar
9.Reynolds, O.Phil. Trans. Roy. Soc, 1883, or Collected Papers, II, 51. See also Scientific Papers II, 1883, and also: On the Dynamic Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Phil. Trans. Roy. Soc, 1895.Google Scholar
10.Rayleigh, Lord. Scientific Papers I, 474, 1880; III, 17, 1887; IV, 197, 1913. See also: On the Stability of Certain Fluid Motions. Proc. London Math. Soc, 11, 57, 1880, and 19, 67, 1887. Scientific Papers I, 474, and III, 17. See also: Scientific Papers IV, 203, 1895, and VI, 197, 1913.Google Scholar
11.Prandtl, L.Bemerkungen über die Entstehung der Turbulenz. ZAMM, 1, pp. 431436, 1921. See also: ZAMM, 11, pp. 407-409, 1931.CrossRefGoogle Scholar
12.Tietjens, O. Beiträge zur Entstehung der Turbulenz. Thesis, Göttingen, 1922, and ZAMM, 5, pp. 200-217, 1925.Google Scholar
13.Heisenberg, W. (1924). Ueber Stabilität und Turbulenz von Flüssigkeitsströmen. Ann. d. Physik, 24, p. 577, 1924.Google Scholar
14.Tollmien, W. Ueber die Entstehung der Turbulenz. 1. Mitteilung, Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse 21-44, 1929; English translation in N.A.C.A. T.M. 609, 1931.Google Scholar
15.Schlichting, H. (1935). Amplitudenverteilung und Energiebilanz der kleinen Störungen bei der Platten- strömung. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, Fachgruppe I, 4, 47-78, 1935 and N.A.C.A. T.M. 1265. 1950.Google Scholar
16.Schubauer, G. B. and Skramstad, H. K.Laminar-Boundary Layer Oscillations and Stability of Laminar Flow. National Bureau of Standards Research Paper 1772. Reprint of a confidential N.A.C.A. Report dated April 1943 (later released as N.A.C.A. War-time Report W-8), and Journal of the Aeronautical Sciences, 14, 69, 1947; see also N.A.C.A. Report 909, 1948.Google Scholar
17.Eckert, E. R. G., Soehngen, E. and Schneider, F. J. (1955). Studien zum Umschlag laminar-turbulent der freien Konvektions-Strömung an einer senkrechten Platte. Anniversary volume Fiinfzig Jahre Grenzschichtforschung, edited by Gortler, H. and Tollmien, W., Braunschweig, pp. 407418, 1955.Google Scholar
18.Tollmien, W. Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen. Nachr. Ges. Wiss, Göttingen, Math. Phys. Klasse, Fachgruppe I, 1, 79-114, 1935; English translation in N.A.C.A. T.M. 792, 1936.Google Scholar
19.Lewis, G. W. (1939). Some Modern Methods of Research in the Problem of Flight. Journal of the Royal Aeronautical Society, 43, pp. 771798, 1939.Google Scholar
20.Doetsch, H. (1940). Untersuchungen an einigen Profllen mit geringem Widerstand im Bereich kleiner ca-Werte. Jb. d. dt. Luftfahitforschung, I, 5457, 1940.Google Scholar
21.Schlichting, H. (1940). Ueber die theoretische Berechnung der kritischen Reynoldsschen Zahl einer Reibungsschicht in beschleunigter und verzögerter Strömung. Jb. d. dt. Luftfahrtforschung, I, 97112, 1940.Google Scholar
22.Schlichting, H. and Ulrich, A.Zur Berechnung des Umschlages laminar-turbulent. Jb. d. dt. Luftfahrtforschung, I, 835, 1942. 1940 prize essay of the Lilienthal- Society for Aeron. Research. Complete text in Bericht S 10 of the Lilienthal Gesellschaft, 75-135, 1940.Google Scholar
23.Lees, L. and Lin, C. C. (1946). Investigation of the Stability of the Laminar Boundary Layer in a Compressible Fluid. N.A.C.A. T.N. 1115, 1946.Google Scholar
24.Görtler, H.Ueber eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachr. Wiss. Ges. Göttingen, Math. Phys. Klasse. New series 2, No. 1, 1940. See also: ZAMM, 21, 250252, 1941.Google Scholar
25.Taylor, G. I. (1923). Stability of a Viscous Liquid Contained between Two Rotating Cylinders. Phil. Trans. A 223, 298, 1923.Google Scholar
26.Betz, A. (1939). Beeinflussung der Reibungsschicht und ihre praktische Verwertung. Schriften d. dt. Akademie d. Luftfahrtforschung, No. 49, pp. 5170, 1939.Google Scholar
27.Betz, A. (1942). Neuere Ergebnisse der Auftriebsbeeinflussung von Flügeln. Schriften d. dt. Akademie d. Luftfahrtforschung, Berlin, 1942.Google Scholar
28.Ackeret, J.. Ras, M. and Pfenninger, W. (1941). Verhinderung des Turbulentwerdens einer Reibungsschicht durch Absaugung. Naturwissenschaften, 622, 1941. See also: Helv. phys. Acta, 14, 323, 1941.Google Scholar
29.Holstein, H. (1940). Messungen zur Laminarhaltung der Grenzschicht an einem Fliigel. Lilienthal-Report, S 10, 1727, 1940.Google Scholar
30.Bussmann, K. and Munz, H. (1942). Die Stabilität der laminaren Reibungsschicht mit Absaugung. Jb. d. dt. Luftfahrtforschung, I, 3639, 1942.Google Scholar
31.Pretsch, J. (1942). Umschlagbeginn und Absaugung. Jb. d. dt. Luftfartforschung, I, 17, 1942.Google Scholar
32.Ulrich, A. (1944). Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung. Schriften d. dt. Akademie d. Luftfahrtforschung, 8 B, No. 2, 1944.Google Scholar
33.Head, M. R. (1955). The Boundary Layer with Distributed Suction. A.R.C. R. & M. 2783, 1955.Google Scholar
34.Pfenninger, W.Untersuchungen über Reibungsverminderungen an Tragflügeln, insbesondere mit Hilfe von Grenzschichtabsaugung. Reports of the Aero Inst. ETH, Zürich, No. 13, 1946. See also: Journal of the Aeronautical Sciences, 16, 227236, 1949; N.A.C.A. T.M. No. 1181, 1947.Google Scholar
35.Schrenk, O.Tragflügel mit Grenzschichtabsaugung. Luftfahrtforschung, 2, pp. 4962, 1928; Zeitschr. f. Flugt. u. Motorluftsch., 22, pp. 259-264, 1931.Google Scholar
36.Schrenk, O. (1935). Versuche mit Absaugeflügeln. Luftfahrtforschung, 12, pp. 1027, 1935.Google Scholar
37.Stüper, J. Flight Experiences and Tests on two Airplanes with Suction Slots. N.A.C.A. T.M. 1232, 1950. Translation of ZWBFB 1821, 1943.Google Scholar
38.Poppleton, E. D. (1955). Boundary-Layer Control for High Lift by Suction at the Leading-Edge of a 40 Degree Swept-Back Wing. A.R.C. R. & M. 2897, 1955.Google Scholar
39.Gregory, N. and Walker, W. S. (1955). Wind-Tunnel Tests on the N.A.C.A. 63A009 Aerofoil with Distributed Suction over the Nose. A.R.C. R. & M. 2900, 1955.Google Scholar
40.Pankhurst, R. C., Raymer, W. G. and Devereux, A. N. (1953). Wind-Tunnel Tests of the Stalling Properties on an 8 per cent Thick Symmetrical Section with Nose Suction through a Porous Surface. A.R.C. R. & M. 2666, 1953. See also: Pankhurst, R. C.: Recent British Work on Methods of Boundary Layer Control. Boundary Layer Symposium at National Physical Laboratory, 1955.Google Scholar
41.Pechau, W. Ein Naherungsverfahren zur Berechnung der ebenen und rotationssymmetrischen turbulenten Grenzschicht mit beliebiger Absaugung oder Ausblasung. Jahrb. d. Wiss. Ges. f. Luftf., pp. 82-92, 1958. See also: Schlichting, H. and Pechau, W.: Auftriebserhöhung von Tragflügeln durch kontinuierlich verteilte Absaugung. Z. J. Flugw. 7, No. 5, pp. 113119, 1959. 75th Anniversary Volume for CI. Dornier.Google Scholar
42.Raspet, A., Cornish, J. J. and Bryant, G. D. (1956). Delay of the Stall by Suction through Distributed Perforations. Aero. Eng. Rev., 15, No. 8, pp. 3239, 1956.Google Scholar
43.Wuest, W. (1957). Periodische Absaugegrenzschichten. Grenzschichtforschung, Symposium on Boundary Layer Research, Freiburg, Edited by Gortler, H., 1958.Google Scholar
44.Schwier, W. (1942). Versuche zur Auftriebssteigerung durch Ausblasen von Luft an einen Profil von 12% Dicke mit verschiedenen Klappenformen. Zentrale f. wiss. Berichtswesen, Berlin-Adlershof FB 1658, 1942.Google Scholar
45.Poisson-Qutnton, PH. (1956). Einige physikalische Betrachtungen über das Ausblasen an Tragflügeln. WGL- Jahrbuch, pp. 2951, 1956.Google Scholar
46.Williams, J. (1958). British Research on Boundary Layer Control for High Lift by Blowing. Z. J. Flugwiss. 6, pp. 143150, 1958.Google Scholar
47.Williams, J. and Alexander, A. J. (1958). Pressure-Plotting Measurements on an 8 per cent Thick Aerofoil with Trailing Edge Flap Blowing. A.R.C. R. & M. 3087, 1958.Google Scholar
48.Pohlhausen, E. (1921). Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. ZAMM, 1, 115121, 1921.Google Scholar
49.Busemann, A. (1935). Gasströmung mit laminarer Grenzschicht entlang einer Platte. ZAMM, 15, pp. 2325, 1935.CrossRefGoogle Scholar
50.Pearson, E. P. (1957). Introductory Remarks Concerning some Aspects of Hypersonic Research and Research Facility Requirements. Paper presented to AGARD Wind Tunnel Panel Meeting. Scheveningen, Holland, July 1957.Google Scholar
51.Von Kármán, TH. and Tsien, H. S.Boundary Layer in Compressible Fluids. Journal of the Aeronautical Sciences, 5, 227232, 1938. See also: Th. von Karman, Report on the Volta Congress, Rome, 1935.Google Scholar
52.Young, A. D. (1953). Section on “Boundary Layers” in Modern Developments in Fluid Dynamics, High Speed Flow, edited by Howarth, L., Vol. I, 375475. Clarendon Press, 1953.Google Scholar
53.Shapiro, A. H. (1954). The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. II. Ronald Press, New York, 1954.Google Scholar
54.Crocco, L. (1941). Sullo strato limite laminare nei gas lungo una lamina plana. Rend. Mat. Univ. Roma, V 2, 138 1941.Google Scholar
55.Hantzsche, W. and Wendt, H. (1940). Zum Kompressibilitätseinfluss bei der laminaren Grenzschicht der ebenen Platte. Jb. d. dt. Luftfahrtforschung, I, 517521, 1940.Google Scholar
56.Brinich, P. F. (1954). Boundary-Layer Transition at Mach 3-12 with and without Single Roughness Elements. N.A.C.A. T.N. No. 3267, 1954.Google Scholar
57.Liepmann, H. W. and Goddard, F. E. (1957). Note on the Mach Number Effect upon the Skin Friction of Rough Surfaces. Journal of the Aeronautical Sciences, 24, 784. 1957.Google Scholar
58.Hill, F. K. (1956). Boundary-Layer Measurements in Hypersonic Flow. Journal of the Aeronautical Sciences, 23, 3542, 1956.Google Scholar
59.Van Driest, E. R. (1951). Turbulent Boundary Layer in Compressible Fluids. Journal of the Aeronautical Sciences, 18, 145160, 1951.Google Scholar
60.Wilson, R. E. (1950). Turbulent Boundary-Layer Characteristics at Supersonic Speeds—Theory and Experiment. Journal of the Aeronautical Sciences, 17, 585594, 1950.Google Scholar
61.Busemann, A. (1935). Aerodynamischer Auftrieb bei Ueberschallgeschwindigkeit. Proc. Volta Congress, Rome, pp. 328360, 1935.Google Scholar
62.Ludwieg, H.Pfeilflügel bei hohen Geschwindigkeiten. Report No. 127 der Lilienthal-Gesellschaft für Luftfahrt forschung, 1940. See also: AVA-Bericht 39/H/18. December 1938, and A. Betz: Naturwiss., V.D.I. Zeitschr.. 92, 1950.Google Scholar
63.Smelt, R. (1946). A Critical Review of German Research on High Speed Airflow. Journal of the Royal Aeronautical Society, 50, 899934, 1946.Google Scholar
64.Liebe, W. (1952). Der Grenzschichtzaun. Interavia, 7, pp. 215217, 1952.Google Scholar
65.Das, A. (1959). Untersuchungen über den Einfluss von Grenzschichtzäunen auf die aerodynamischen Eigen- schaften von Pfeil- und Deltaflügeln. Thesis, Braun schweig, 1959, Zeitschr. f. Flugwiss., 7, pp. 227242, 1959.Google Scholar
66.Schlichting, H. (1958). Einige neuere Ergebnisse über Grenzschichtbeeinflussung. Proceedings of the First Inter national Congress of the Aeronautical Sciences, Madrid, 1958. Pergamon Press, London, 1960.Google Scholar
67.Himmelskamp, H. (1950). Profiluntersuchungen an einem umlaufenden Propeller. Mitteilungen a. d. Max-Planck-Institut für Strömungsforschung, Göttingen, No. 2, 1950.Google Scholar
68.Muesmann, G. (1958). Zusammenhang der Strömungseigenschaften des Laufrades eines Axialgebläses mit denen eines Einzelfliigels. Zeitschr. f. Flugwiss., 6, 1958.Google Scholar
69.Speidel, L. and Scholz, N. (1957). Untersuchungen 66. über die Strömungsverluste in ebenen Schaufelgittern. VDI-Forschungsheft, 464, Series B, Vol. 23, 1957.Google Scholar
70.Schlichting, H.Ergebnisse und Probleme von Gitteruntersuchungen. Zeitschr. f. Flugwiss., 1, pp. 109122, 1953, and VDI-Bericht, 3, pp. 7-21, 1955. English translation in Journal of the Aeronautical Sciences, 21, 163-178, 1954.Google Scholar
71.Schlichting, H. (1959). Application of Boundary Layer Theory in Turbomachinery. Jour. Basic Engineering, Vol. 81, 1959; see also Siemens Zeitschrift, 33, 1959.Google Scholar
72.Von Kármán, TH. (1954). Aerodynamics. Selected Topics in the Light of their Historical Development. Cornell University Press, 1954.Google Scholar
73.Prandtl, L.Neuere Ergebnisse der Turbulenzforschung. Zeitschr. VDI, 77, pp. 105114, 1933. See also: H. Schlichting, Neuere Untersuchungen über die Turbulenzentstehung. Die Naturwissenschaften. pp. 376-381, 1934.Google Scholar
74.Jones, R. T. (1956). Some Recent Developments in the Aerodynamics of Wings for High Speeds. Zeitschr. f. Flugwiss., 4, pp. 257262, 1956.Google Scholar
75.Zaat, J. A. (1958). Numerische Beiträge zur Stabilitäts-theorie der Grenzschichten. Grenzschichtforschung, Symposium on Boundary Layer Research, Freiburg. Edited by Görtler, H., pp. 127139, 1958.Google Scholar
76.Schlichting, H. (1959). Entstehung der Turbulenz. Hand- buch der Physik.—Encyclopedia of Physics. Vol. VIII/1, Fluid Dynamics I. pp. 351450. Springer, Berlin, 1959.Google Scholar
77.Görtler, H. (Editor). Grenzschichtforschung—Boundary Layer Research. IUTAM Symposium Freiburg/Brsg., August 1957. Springer, Berlin, 1958.Google Scholar
78.Jones, B. M. (1938). Flight Experiments on the Boundary Layer. First Wright Brothers’ Lecture, 1937. Journal of the Aeronautical Sciences, 5, pp. 81101, 1938.Google Scholar