Article contents
Tiltrotor CFD Part II - aerodynamic optimisation of tiltrotor blades
Published online by Cambridge University Press: 05 May 2017
Abstract
This paper presents aerodynamic optimisation of tiltrotor blades with high-fidelity computational fluid dynamics. The employed optimisation framework is based on a quasi-Newton method, and the required high-fidelity flow gradients were computed using a discrete adjoint solver. Single-point optimisations were first performed to highlight the contrasting requirements of the helicopter and aeroplane flight regimes. It is then shown how a trade-off blade design can be obtained using a multi-point optimisation strategy. The parametrisation of the blade shape allowed the twist and chord distributions to be modified and a swept tip to be introduced. The work shows how these main blade shape parameters influence the optimal performance of the tiltrotor in helicopter and aeroplane modes, and how an optimised blade shape can increase the overall tiltrotor performance. Moreover, in all the presented cases, the accuracy of the adjoint gradients resulted in a small number of flow evaluations for finding the optimal solution, thus indicating gradient-based optimisation as a viable tool for modern tiltrotor design.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2017
References
REFERENCES
- 5
- Cited by