Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T02:24:52.615Z Has data issue: false hasContentIssue false

Vortex formation and flow separation: the beauty and the beast in aerodynamics

Published online by Cambridge University Press:  04 July 2016

A. Elsenaar*
Affiliation:
Airbus Large Aircraft Division, Toulouse, France

Extract

Ladies and gentlemen, it is an honour and a great pleasure to present this Lanchester Memorial Lecture. I thank the Royal Aeronautical Society and its Aerodynamic Committee for inviting me. In preparing this lecture I greatly enjoyed the added significance of presenting it in the historical context set by Lanchester. But the real pleasure is to be here among many good friends with whom I worked together for shorter or longer periods.

“A body that in its motion through a fluid does not give rise to a surface of discontinuity.” So Lanchester defined a ‘ streamline body’ in his standard work Aerodynamics. With ‘ discontinuity’ the boundary is meant between the outer flow and the dead water region formed by fluid that departs from the surface as illustrated nicely in Fig. 1 for the flow around a cylinder.

Type
The 2000 Lanchester lecture
Copyright
Copyright © Royal Aeronautical Society 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lanchester, F.W. Aerodynamics, constituting the first volume of a complete work on aerial flight, 1918, 4th ed of 1907, Constable & Company, London.Google Scholar
2. Joukowski, N.E. Geometrische Untersuchungen über der Kutta'schen Strömung, 1910/1912, Trans Physical Section of the Imperial Society of the Friends of Natural Science, Moscow.Google Scholar
3. Prandtl, L. Tragflügeltheorie I & II, 1911/1919, Mitteilungen nach der Königlichen Gesellschaft der Wissenschaft zu Göttingen.Google Scholar
4. Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung, 1904, Verh des III Intern Math Kongresses, Heidelberg.Google Scholar
5. van Ingen, J. Part of my forty years of teaching and research in boundary-layer flows: the laminar separation bubble, 1997, Boundary layer separation in aircraft aerodynamics seminar dedicated to Prof Jan van Ingen, Delft Technical University.Google Scholar
6. Goldstein, S. On laminar boundary layer flow near a position of separation, Quart J Mech Appl Math 1, 1948, pp 4369.Google Scholar
7. Van Den Berg, B. Elsenaar, A., Lindhout, J.P.F. and Wesseling, P. Measurements in an incompressible three-dimensional turbulent boundary layer, under infinite swept wing conditions, and comparison with theory, J Fluid Mech, 1975, 70, (1).Google Scholar
8. Bradshaw, P., Ferris, D.H. and Atwell, N.P. Calculation of boundary layer development using the turbulent energy equation, J Fluid Mech, 1967, 28, pp 593616.Google Scholar
9. Elsenaar, A., Van Den Berg, B. and Lindhout, J.P.F. Three dimensional separation of an incompressible turbulent boundary layer on an infinite swept wing, 1975, AGARD CP-168; also NLR MP-75001U.Google Scholar
10. Le Balleur, J.C. Calcul par interaction visqueux non-viscueux des écoulements compressibles fortement décollés aux grandes portances sur profils d'ailes et voilures, AGARD CP-415, 1992.Google Scholar
11. Maskel, E.C. Flow separation in three dimensions, 1955, RAE Aero Rep 2565.Google Scholar
12. Legendre, R. Écoulement au voisinage de la pointe avant d'une aile à flèche aux incidences moyennes, 1952, 8th Int Cong Th Appl Mech, Istanbul.Google Scholar
13. Smith, J.H.B. Vortical flows and their computation, 1980, RAE Tech Memo AERO, 1866.Google Scholar
14. Smith, J.H.B. Behaviour of a vortex sheet separating from a smooth surface, RAE TR-77058, 1977.Google Scholar
15. Smith, F.T. Three-dimensional viscous and inviscid separation of a vortex sheet from a smooth non-slender body, 1978, RAE TR-78095.Google Scholar
16. Fiddes, S.P. A theory of the separated flow past a slender elliptical cone at incidence, AGARD CP-291, 1980.Google Scholar
17. Fiddes, S.P. and Smith, J.H.B. Calculations of axisymmetric separated flow past circular cones at large angle of incidence, AGARD CP-336, 1982.Google Scholar
18. Fiddes, S.P. and Smith, J.H.B. Asymptotic Separation from Slender Cones at Incidence, 1986, Boundary layer separation IUTAM symposium, 26-28 Aug 1986, London, Springer Verlag.Google Scholar
19. Lighthill, M.J. Introduction, Boundary Layer Theory, Laminar Boundary Layers, 1963, Rosenhead, L. (Ed), Oxford University Press.Google Scholar
20. Peake, D.J. and Tobak, M. Three-dimensional interactions and vortical flows with emphasis on high speeds, AGARDograph No 252, 1980.Google Scholar
21. Barker, P.G. A mathematical model for ‘open’ separation in three dimensional flow, Essays on Aerodynamics, 1992, pp 117, Delft University Press.Google Scholar
22. Van Den Berg, B. Physical aspects of separation in three-dimensional flows, 1997, Boundary layer separation in aircraft aerodynamics seminar dedicated to Prof Jan van Ingen, Delft Technical UniversityGoogle Scholar
23. Délery, J. Topologie des ecoulement tridimensionnels decolles stationnaires: point singuliers, separatrices et structures tourbillonnaires, ONERA, 1999, Rapport Technique No RT 121/7078 DAFE/N.Google Scholar
24. Brandsma, F. Ongoing work for GARTEUR AD(AG-26) 2000.Google Scholar
25. Geurts, E.G.M. and Cunningham, A.M. Flow visualisation and particle image velocimetry on a semi-span streaked delta wing, stationary and oscillating in pitch, NLR TP-97261L, 1997.Google Scholar
26. Redeker, G., Mueller, R., Ashill, P.R., Elsenaar, A. and Schmitt, V. Experiments on the DFVLR-F4 wing body configuration in several European windtunnels, AGARD CP-429, 1987.Google Scholar
27. Elsenaar, A. Observed Reynolds number effects on airfoils and high aspect ratio wings at transonic flow conditions, AGARDograph 303; also NLR MP-88006U, 1988.Google Scholar
28. Haines, A.B. Scale effect in transonic flow, 27th Lanchester Memorial Lecture, Aeronaut J, August/September 1987, 91, (907), pp 291313.Google Scholar
29. Elsenaar, A. and Erikson, G., (Ed) Proceedings of the Symposium on the international vortex flow experiment on Euler code validation, 1986, Stockholm 1-3, FFA, Stockholm.Google Scholar
30. Elsenaar, A., Hjelmberg, L., Bütefisch, K. and Bannink, W.J. The International Vortex Flow Experiment, AGARD CP-437, 1988; also NLRMP-88019U.Google Scholar
31. Brandsma, F. Private communication.Google Scholar
32. Boersen, S.J. Reynolds number effects of pressure and normal force distributions along conically pointed circular cylinder at free-stream Mach number of 2-3, NLRTR-75124U, 1975.Google Scholar
33. Prananta, B.B., Sytsma, H.A. and Amato, M. Navier-Stokes calculations of supersonic flow about slender configurations — results for an ogive cylinder configuration, GARTEUR TP-109-1/NLR TR-99494, Garteur, 1999.Google Scholar
34. Elsenaar, A. Berekeningen van de drie-dimensionale grenslaag op de bovenzijde van de binnenvleugels van SKV-1 en SKV-2, NLR TR-76124 (restricted), 1976.Google Scholar
35. Lovell, D.A. European research to reduce drag for supersonic transport aircraft, 1999, AIAA paper 99-3100.Google Scholar
36. Van Muijden, J. Private communication.Google Scholar
37. Lighthill, M.J. On displacement thickness, J Fluid Mech, 1958, 4, pp 383392.Google Scholar
38. De Bruin, A.C. Hegen, G.H., Rohne, P.B. and Spalart, P.R. Flow field survey in trailing vortex system behind a civil aircraft model at high lift, 1996, The characterisation and modification of wakes from lifting vehicles in fluids, AGARD Symposium, AGARD CP-584; also NLR TP-96284U.Google Scholar
39. Laporte, F. and Corjon, A. Steady and unsteady 3D simulations of large civil aircraft wakes, 2000, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona.Google Scholar
40. Bilanin, A.J., Teske, M.E., Donaldson, C. Du, P. and Snedeke, R.S. Viscous effects in aircraft trailing vortices, 1977, Wake Vortex Minimisation, NASA SP-409.Google Scholar
41. Spalart, P.R. Airplane Trailing Vortices, Annu Rev Fluid Mech, 1998, 30, pp 107138.Google Scholar
42. Harris, M. Private communication.Google Scholar
43. Squire, H.B. The growth of a vortex in turbulent flow, Aeronaut Q, August 1965, 16, pp 302306.Google Scholar
44. Iverness, D.J. Correlation of turbulent trailing vortex decay data, J Aircr, 1976,13, (5).Google Scholar
45. Spreiter, J.R., Sacks, A.H. The rolling up of the trailing vortex sheet and its effect on the downwash behind wings, J Aeronaut Sci, 1951, 18.Google Scholar
46. Roberts, L. Persistence and decay of wake vorticity, AGARD CP-187, 1975.Google Scholar
47 Ciffone, D.L. and Orloff, K.L. Far-field wake-vortex characteristics of wings, J Aircr, 1975,12,(5).Google Scholar
49. Crow, S.C. Stability theory for a pair of trailing vortices, AIAA J, 1970, 8, (12), pp 2, 172-2, 179.Google Scholar
50. Crouch, J.D. and Spalart, P.R. Active system for early destruction of trailing vortices, Patent with international publication number: WO 99/00297.Google Scholar