Published online by Cambridge University Press: 27 January 2016
Aerodynamic performance degradation has been considered a critical hazard to aircraft due to flying in heavy rain. In this work, a two-way momentum coupled Eulerian-Lagrangian approach is developed to study the aerodynamic performance of a two-dimensional (2D) transport-type NACA 64-210 cruise and landing configuration aerofoil as well as a three-dimensional (3D) NACA 64-210 cruise configuration rectangular wing in heavy rain environment. Raindrop impacts, splashback and formed water film are modeled. The steady-state incompressible air flow field and the raindrop trajectory are calculated alternately by incorporating an interphase momentum coupling term through a curvilinear body-fitted grid surrounding the aerofoil/wing. Our simulation results agree well with the experimental results and show significant aerodynamic penalties for all the test cases in heavy rain. Rain-induced premature boundary-layer transition and separation are observed and details of the raindrop splashback effect on the boundary layer are examined. A 1° rain-induced decrease in stall angle-of-attack is predicted. An uneven water film upon the wing surface is observed and its effect on the wing surface roughness is also examined.