Article contents
Aileron size and location to minimise induced drag during rolling-moment production at zero rolling rate
Published online by Cambridge University Press: 12 April 2021
Abstract
Most modern aircraft employ discrete ailerons for roll control. The induced drag, rolling moment, and yawing moment for an aircraft depend in part on the location and size of the ailerons. In the present study, lifting-line theory is used to formulate theoretical relationships between aileron design and the resulting forces and moments. The theory predicts that the optimum aileron geometry is independent of prescribed lift and rolling moment. A numerical potential flow algorithm is used to evaluate the optimum size and location of ailerons for a wide range of planforms with varying aspect ratio and taper ratio. Results show that the optimum aileron design to minimise induced drag always extends to the wing tip. Impacts to induced drag and yawing moment are also considered, and results can be used to inform initial design and placement of ailerons on future aircraft. Results of this optimisation study are also compared to theoretical optimum results that could be obtained from morphing-wing technology. Results of this comparison can be used to evaluate the potential benefits of using morphing-wing technology rather than traditional discrete ailerons.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society
References
REFERENCES
- 3
- Cited by