Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T08:43:19.651Z Has data issue: true hasContentIssue false

An Introduction to the Flow about Plane Swept-back Wings at Transonic Speeds*

Published online by Cambridge University Press:  04 July 2016

E. W. E. Rogers
Affiliation:
Aerodynamics Division, National Physical Laboratory
I. M. Hall
Affiliation:
Aerodynamics Division, National Physical Laboratory

Summary

A brief survey is made of the way the flow develops about wings with leading edges swept at about 50° as the stream Mach number rises from a subsonic to a supersonic value. The shock pattern which occurs may be complex. Three aspects of the wing flow are discussed in more detail, including the possible conditions for shock-induced separation of the surface boundary layer. The effect of the changing flow pattern on the overall wing lift, drag and pitching moment is commented upon.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

A Lecture given before the Society on 1st December 1959.

References

page 453 note * More precisely, an analogous effect has not been detected in the experiments. It has been argued that for three-dimensional flows a pressure freeze should occur very close to sonic stream speed, and is thus much more limited in extent than in the two-dimensional case. This small effect may often be masked by wall interference however and thus cannot be detected unless the model is very small compared with the tunnel. Another form of pressure freeze for the region ahead of the rear shock is discussed in Section 4·2.

page 457 note * In some cases the surface oil patterns indicate the trace of the forward shock as it passes beyond the intersection point behind the outboard shock (see Fig. 28). The forward shock is above the separated fluid however and does not appear to influence the surface pressures

page 460 note * The resemblance should not be pressed too far. The region ahead of a forward shock may be influenced by disturbances which propagate along the lower surface from the root, say, and pass around the leading edge onto the upper surface.