Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:04:18.387Z Has data issue: false hasContentIssue false

Analysis of forward approach for upper bounding end-to-end transmission delays over distributed real-time avionics networks

Published online by Cambridge University Press:  17 April 2020

Q. Xu*
Affiliation:
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China Civil Aviation Division, Shanghai Aviation Electric co. LTD, Shanghai, China
X. Yang
Affiliation:
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

Distributed real-time avionics networks have been subjected to a great evolution in terms of functionality and complexity. A direct consequence of this evolution is a continual growth of data exchange. AFDX standardised as ARINC 664 is chosen as the backbone network for those distributed real-time avionics networks as it offers high throughput and does not require global clock synchronisation. For certification reasons and engineering research, a deterministic upper bound of the end-to-end transmission delay for packets of each flow should be guaranteed. The Forward Approach (FA) is proposed for the computation of the worst-case end-to-end transmission delay. This approach iteratively estimates the maximum backlog (amount of the pending packets) in each visited switch along the transmission path, and the worst-case end-to-end transmission delay can be computed. Although it is pessimistic (overestimated), the Forward Approach can provide a tighter upper bound of the end-to-end transmission delay while considering the serialisation effect. Recently, our research finds the computation of the serialisation effect might induce an optimistic (underestimated) upper bound. In this paper, we analyse the pessimism in the Forward Approach and the optimism induced by the computation of the serialisation effect, and then we provide a new computation of the serialisation effect. We compare this new computation with the original one, the experiments show that the new computation reduces the optimism and the upper bound of the end-to-end transmission delay can be computed more accurately.

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, F., Chu, W., Fan, X., et al. Research on Architecture of Integrated Modular Avionics[J]. Acta Optica Sinica, 2009, 16(9), pp 4751. DOI: 10.3969/j.issn.1671-637X.2009.09.013Google Scholar
Watkins, C.B., Walter, R. Transitioning from federated avionics architectures to Integrated Modular Avionics[C]. IEEE/AIAA Digital Avionics Systems Conference, Oct., 2007. DOI: 10.1109/DASC.2007.4391842CrossRefGoogle Scholar
ARINC 664, Aircraft Data Network, Part 7[J]. Technical report, 2005, ARINC specification 664.Google Scholar
Wang, G., Bo, Y., Yang, Q. Key Technologies of ARINC664 Bus Testing[C]. Fifth International Conference on Instrumentation & Measurement, Sep., 2016. DOI: 10.1109/IMCCC.2015.27CrossRefGoogle Scholar
Liu, Y., Wang, H., Wang, B., et al. Design and Implementation of AFDX End System Software[J]. Electronics Optics & Control, 2012, 19(11), pp 7176.Google Scholar
Chen, D., Song, D.AFDX Network Performance Testing[C]. Proceedings of the First Symposium on Aviation Maintenance and Management, 2014: 313322. DOI: 10.1007/978-3-642-54236-7_35CrossRefGoogle Scholar
Suthaputchakun, C., Lee, K.M.B., Sun, Z. Impact of End System scheduling policies on AFDX performance in avionic on-board data network[C]. International Conference on Advanced Informatics: Concepts, Aug., 2015. DOI: 10.1109/ICAICTA.2015.7335388CrossRefGoogle Scholar
Kemayo, G., Ridouard, F., Bauer, H., et al. A Forward end-to-end delays Analysis for packet switched networks[C]. International Conference on Real-time Networks & Systems, 2014.CrossRefGoogle Scholar
Coelho, R., Fohler, G., Scharbarg, J.L. Upper bound computation for buffer backlog on AFDX networks with multiple priority virtual links[C]. Symposium on Applied Computing, 2017. DOI: 10.1145/3019612.3019729CrossRefGoogle Scholar
Baga, Y., Ghaffari, F., Zante, E., et al. Worst frame backlog estimation in an avionics full-duplex switched ethernet end-system[C]. Digital Avionics Systems Conference, Sep., 2016. DOI: 10.1109/DASC.2016.7777990CrossRefGoogle Scholar
Baga, Y., Richaud, M., Ghaffari, F., et al. Probabilistic model of AFDX frames reception for end system backlog assessment[C]. IEEE International Symposium on Industrial Embedded Systems, Feb., 2017. DOI: 10.1109/SIES.2017.7993400CrossRefGoogle Scholar
Kemayo, G., Benammar, N., Ridouard, F., et al. Improving AFDX end-to-end delays analysis[C]. IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Sep., 2015. DOI: 10.1109/ETFA.2015.7301463CrossRefGoogle Scholar
Benammar, N., Ridouard, F., Bauer, H., et al. Forward end-to-end delay analysis extension for FP/FIFO policy in AFDX networks[C]. 22nd IEEE International Conference on Emerging Technologies and Factory Automation, Sep., 2017. DOI:10.1109/ETFA.2017.8247606CrossRefGoogle Scholar
Liu, S.H., He, F., Wang, T., et al. Optimization of Trajectory Approach in end-to-end delay analysis considering the flow offsets scheduling[C]. IEEE Region 10 Conference, Nov., 2016. DOI: 10.1109/TENCON.2016.7848732CrossRefGoogle Scholar
Bauer, H., Scharbarg, J.L., Fraboul, C. Worst-case end-to-end delay analysis of an avionics AFDX network[C]. Design, Automation & Test in Europe Conference & Exhibition, Mar., 2010. DOI: 10.1109/DATE.2010.5456993CrossRefGoogle Scholar
Benammar, N., Ridouard, F., Bauer, H., et al. Forward End-To-End delay Analysis for AFDX networks[J]. IEEE Transactions on Industrial & Informatics, Jun., 2017, 14(3) pp 858865. DOI: 10.1109/TII.2017.2720799CrossRefGoogle Scholar
Dong, S., Zeng, X., Ding, L., et al. The Design and Implementation of the AFDX Network Simulation System[C]. International Conference on Multimedia Technology, Oct., 2010. DOI: 10.1109/ICMULT.2010.5629728CrossRefGoogle Scholar
Fernandez-Olmos, L., Burrull, F., Pavon-Marino, P. Net2Plan-AFDX: An open-source tool for optimization and performance evaluation of AFDX networks[C]. IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sep., 2016. DOI: 10.1109/DASC.2016.7778026CrossRefGoogle Scholar
Ashjaei, M., Behnam, M., Nolte, T.SEtSim: A modular simulation tool for switched Ethernet networks[J]. Journal of Systems Architecture, Feb., 2016, 65, pp 114. DOI: 10.1016/j.sysarc.2016.02.002CrossRefGoogle Scholar
Adnan, M., Scharbarg, J.L., Ermont, J., et al. An improved timed automata approach for computing exact worst-case delays of AFDX sporadic flows[C]. IEEE 17th International Conference on Emerging Technologies & Factory Automation, Sep., 2012. DOI: 10.1109/ETFA.2012.6489576CrossRefGoogle Scholar
Adnan, M., Scharbarg, J.L., Ermont, J.R.M., et al. Model for worst case delay analysis of an AFDX network using timed automata[C]. IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), Oct., 2010. DOI: 10.1109/ETFA.2010.5641124CrossRefGoogle Scholar
Cruz, R.L.A calculus for network delay. I. Network elements in isolation[J]. IEEE Transactions on Information Theory, Feb., 1991, 37(1), pp 114131. DOI: 10.1109/18.61109CrossRefGoogle Scholar
Cruz, R.L.A calculus for network delay, Part II: Network analysis[J]. IEEE Transactions on Information Theory, Feb., 1991, 37, pp 132141. DOI: 10.1109/18.61110CrossRefGoogle Scholar
Jing, X., Min, X. Delay bound analysis in real-time networks with priority scheduling using network calculus[C]. IEEE International Conference on Communications, 2013.Google Scholar
Qingfei, X., Xinyu, Y.Performance Analysis on Transmission Estimation for Avionics Real-Time System Using Optimized Network Calculus[J]. International Journal of Aeronautical and Space Sciences, 2019. DOI: 10.1007/s42405-018-00140-7Google Scholar
Feng, H.E., Ershuai, L.I.Deterministic bound for avionics switched networks according to networking features using network calculus[J]. Chinese Journal of Aeronautics, Sep., 2017, 30(6). DOI: 10.1016/j.cja.2017.08.010Google Scholar
Zhao, L., Qiao, L., Ying, X., et al. Using multi-link grouping technique to achieve tight latency in network calculus[C]. IEEE/AIAA Digital Avionics Systems Conference, 2013.CrossRefGoogle Scholar
Bauer, H., Scharbarg, J.L., Fraboul, C. Worst-case end-to-end delay analysis of an avionics AFDX network[C]. Design, Automation & Test in Europe Conference & Exhibition, 2010.CrossRefGoogle Scholar
Bauer, H., Scharbarg, J.L., Fraboul, C. Applying and optimizing trajectory approach for performance evaluation of AFDX avionics network[C]. IEEE International Conference on Emerging Technologies & Factory Automation, Oct., 2009. DOI: 10.1109/ETFA.2009.5347083CrossRefGoogle Scholar
Li, X., Cros, O., George, L. The Trajectory approach for AFDX FIFO networks revisited and corrected[C]. IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications, Aug., 2014. DOI: 10.1109/RTCSA.2014.6910523CrossRefGoogle Scholar
Martin, S., Minet, P. Schedulability analysis of flows scheduled with FIFO: application to the expedited forwarding class[C]. International Parallel & Distributed Processing Symposium, May., 2006. DOI: 10.1109/IPDPS.2006.1639424CrossRefGoogle Scholar
Bauer, H., Scharbarg, J.L., Fraboul, C.Improving the Worst-Case Delay Analysis of an AFDX Network Using an Optimized Trajectory Approach[J]. IEEE Transactions on Industrial & Informatics, Dec., 2010, 6(4), pp 521533. DOI: 10.1109/tii.2010.2055877CrossRefGoogle Scholar
Kemayo, G., Ridouard, F., Bauer, H., et al. Optimism due to serialization in the trajectory approach for switched ethernet networks[C]. 7th Junior Researcher Workshop on Real-Time Computing, Sep., 2013.Google Scholar
Kemayo, G., Ridouard, F., Bauer, H., et al. Optimistic problems in the trajectory approach in FIFO context[C]. IEEE Conference on Emerging Technologies & Factory Automation, Sep., 2013. DOI: 10.1109/ETFA.2013.6648054CrossRefGoogle Scholar
Zhen, D., Feng, H.E., Zhang, Y., et al. Real-time path optimization algorithm of AFDX virtual link[J]. Acta Aeronautica Et Astronautica Sinica, Jun., 2015. DOI: 10.7527/S1000-6893.2014.0323Google Scholar
Cha, Y.J., Lim, J.H., Lee, S.Y., et al. New feasible grouping algorithms for virtual link in AFDX networks[C]. International Conference on Informatics, Jun., 2015. DOI: 10.1109/ICIEV.2015.7334035CrossRefGoogle Scholar
Scharbarg, J.L., Ridouard, F., Fraboul, C.A Probabilistic Analysis of End-To-End Delays on an AFDX Avionic Network[J]. IEEE Transactions on Industrial Informatics, Mar., 2009, 5(1), pp 3849. DOI: 10.1109/TII.2009.2016085CrossRefGoogle Scholar