Article contents
Control of the horizontal position of a stratospheric airship during ascent and descent
Published online by Cambridge University Press: 27 January 2016
Abstract
A stratospheric airship flies at a working altitude of 20km when it takes off from the ground. During ascent and descent, the wind field and thermal environment are highly complex. The thermal environment affects altitude, whereas wind influences the horizontal position of the airship. At a low altitude, this horizontal position cannot be controlled by thrusts given the low thrust-to-weight ratio, especially under a large wind field. However, it may be controlled indirectly by the pitch angle during ascent and descent with a certain vertical velocity. This study therefore proposes ascending and descending schemes for a stratospheric airship based on the thermal model. In this model, altitude is determined by the net lift/weight, whereas the horizontal position is controlled by the thrust and pitch. The pitch angle is determined by ballonets and an elevator. To allocate pitch control between the ballonets and the elevator under different airspeeds, pseudo-inverse dynamics of varied weight are introduced. In horizontal position control, the method of chain allocation is then applied between a pitch angle and vectored thrust to control the position of a stratospheric airship during ascent/descent.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2015
References
- 7
- Cited by