Article contents
Dispersion reduction of artillery rockets guided by flight path steering method
Published online by Cambridge University Press: 23 March 2016
Abstract
Artillery rockets are sensitive to disturbances (total impulse variation, wind, thrust misalignment, etc.). As the range of ground-to-ground rockets increases, the accuracy of free flight rockets decreases. Requirements for the increase of the range and minimisation of the impact point dispersions can be solved by adding guidance and control systems to rockets. Based on the differences between the measured flight parameters and the calculated parameters for the nominal trajectory, the flight path angle correction algorithm is obtained by adding the correction to the nominal value. The flight path steering guidance system with lateral acceleration autopilot in the inner loop, is used for the guidance of hypothetical artillery rockets. The guidance algorithm given in this paper eliminates the time correction due to rocket velocity variations. Efficiency of the proposed algorithm is illustrated by numerical simulation. There is no practical influence of the external disturbances on impact point dispersion. It is also shown that the measurement errors of the inertial measurement unit are the dominant factor affecting impact point dispersion of artillery rockets modified by adding a guidance system based on the flight path steering method.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2016
References
REFERENCES
- 2
- Cited by