Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T11:16:21.287Z Has data issue: false hasContentIssue false

Experimental analysis of flow instability detection in a centrifugal compressor using variational mode decomposition

Published online by Cambridge University Press:  01 April 2022

W. Wang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
H. Zhang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
C. Yang*
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
C. Yang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
C. Hu
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
*
*Corresponding Author. Email: yangce@bit.edu.cn

Abstract

In centrifugal compressors, the identification of flow instability signals from experiments is a difficult problem owing to the nonlinear and non-stationary characteristics. Otherwise, the complicated asymmetric structure of the volute brings a huge challenge to the evolution and circumferential nonuniformity characteristics of the flow instabilities. This paper presents experimental and numerical investigations on internal flow field to understand the flow instability characteristics in a centrifugal compressor. Considering nonlinear and non-stationary signals, a method based on Fourier-transform and variational mode decomposition was introduced to analyse the flow instability characteristics. The Fourier spectrum results show that at 0.21kg/s of 80krpm, the pressure signal has a noticeable high-frequency fluctuation, which indicates that the compressor enters the flow instability state. The variational mode decomposition results show that before a surge, the compressor experiences different flow instability stages: the RI stage, the coexistence stage of RI and stall, and the stall stage. Moreover, obvious circumferential nonuniformity characteristics of flow instabilities were observed during the throttling process. RI first occurred at the 180° circumferential position and then the stall first appeared in the circumferential range of 60° to 240°. The simulation results that it is because that the asymmetric volute causes the adverse pressure gradient inside the impeller passage and a high-pressure region (120°–240°) at the upstream of the impeller inlet. Under this combined action of the two, the effect region of tip leakage vortex expands the upstream of the impeller inlet. Meanwhile, the tip leakage vortex core migrates to a lower span of blades. This study demonstrates the ability to analyse nonlinear and non-stationary signals from a centrifugal compressor via variational mode decomposition, and provides a useful guidance for the identification of flow instability signals.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McDougall, N.M., Cumpsty, N.A. and Hynes, T.P. Stall inception in axial compressors, J Turbomach, 1990, 112, pp 116123. doi: 10.1115/1.2927406.Google Scholar
Day, I.J. Stall inception in axial flow compressors, J Turbomach, 1993, 115, pp 19. doi: 10.1115/1.2929209.CrossRefGoogle Scholar
Greitzer, E.M. Surge and rotating stall in axial flow compressors—Part II: Experimental results and comparison with theory, J Eng Power, 1976, 98, pp 199211. doi: 10.1115/1.3446139.CrossRefGoogle Scholar
Liu, Y., Li, J., Du, J., Li, F. and Zhang, H. Application of fast wavelet analysis on early stall warning in axial compressors, J Therm Sci, 2019, 28, pp 837849.Google Scholar
Arshad, .A., Li, Q., Li, S. and Pan, T. Effects of inlet radial distortion on the type of stall precursor in low-speed axial compressor, Proc Inst Mech Eng Part G J Aerosp Eng, 2016, 232, pp 5567. doi: 10.1177/0954410016670679.Google Scholar
Vo, H.D., Tan, C.S. and Greitzer, E.M. Criteria for spike initiated rotating stall, J Turbomach, 2008, 130. doi: 10.1115/1.2750674.Google Scholar
Spakovszky, Z.S. and Roduner, C.H. Spike and modal stall inception in an advanced turbocharger centrifugal compressor, J Turbomach, 2009, 131, pp 17451755. https://doi.org/10.1115/1.2988166.Google Scholar
Everitt, J.N. and Spakovszky, Z.S. An investigation of stall inception in centrifugal compressor vaned diffuser, J Turbomach, 2012, 135. doi: 10.1115/1.4006533.Google Scholar
Bousquet, Y., Binder, N., Dufour, G., Carbonneau, X., Trebinjac, I. and Roumeas, M. Numerical investigation of Kelvin-Helmholtz instability in a centrifugal compressor operating near stall, J Turbomach, 2016, 138. doi: 10.1115/1.4032457.Google Scholar
Bousquet, Y., Binder, N., Dufour, G., Carbonneau, X., Trebinjac, I., Roumeas, M., Numerical investigation of Kelvin-Helmholtz instability in a centrifugal compressor operating near stall, J Turbomach, 2016, 138. doi: 10.1115/1.4032457.CrossRefGoogle Scholar
Yang, C., Wang, Y., Lao, D., Wang, W., Yang, C., Chen, X. and Zhang, H. Detailed measurements of the static pressure characteristics around the centrifugal compressor casing wall, J Therm Sci Technol, 2017, 12, pp JTST0009JTST0009. doi: 10.1299/jtst.2017jtst0009.Google Scholar
Yang, C., Wang, Y., Tong, D., Yang, C. and Li, Y. Stall inception induced by the volute tongue at centrifugal compressor inlet, Proc Inst Mech Eng Part G J Aerosp Eng, 2017, 231, pp. 931940. doi: 10.1177/0954410016645127.Google Scholar
Yang, C., Zhang, H., Yang, D., Lao, D. and Yang, C. Casing wall static pressure distribution behavior in a centrifugal compressor with asymmetric inlet/outlet structures, Proc Inst Mech Eng Part A J Power Energy, 2019, 233, pp. 3751. doi: 10.1177/0957650918774934.Google Scholar
Zhang, H., Yang, C., Yang, C., Zhang, H., Wang, L. and Chen, J., Inlet bent torsional pipe effect on the performance and stability of a centrifugal compressor with volute, Aerosp Sci Technol, 2019, 93, p 105322. doi: 10.1016/j.ast.2019.105322.Google Scholar
Kameier, F. and Neise, W. Rotating blade flow instability as a source of noise in axial turbomachines, J Sound Vib, 1997, 203, pp. 833853. doi: 10.1006/jsvi.1997.0902.Google Scholar
Kameier, F. and Neise, W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction, J Turbomach, 1997, 119, pp 460471. doi: 10.1115/1.2841145.Google Scholar
Mailach, R., Lehmann, I. and Vogeler, K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex, J Turbomach, 2000, 123, pp 453460. doi: 10.1115/1.1370160.CrossRefGoogle Scholar
Mailach, R., Sauer, H. and Vogeler, K. The periodical interaction of the tip clearance flow in the blade rows of axial compressors, ASME Turbo Expo 2001 Power Land, Sea, Air. (2001). doi: 10.1115/2001-GT-0299.Google Scholar
Vo, H.D. Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations, J Propuls Power, 2010, 26, pp 556561. doi: 10.2514/1.26709.Google Scholar
Sun, Z., Zou, W. and Zheng, X. Instability detection of centrifugal compressors by means of acoustic measurements, Aerosp Sci Technol, 2018, 82–83, pp 628635. doi: 10.1016/j.ast.2018.09.006.Google Scholar
Li, T., Wu, Y. and Ouyang, H. Influence of axial skewed slots on the rotating instability of a low-speed axial compressor, Proc Inst Mech Eng Part G J Aerosp Eng, 2020, 235, pp 385401. doi: 10.1177/0954410020944331.Google Scholar
Li, T., Wu, Y. and Ouyang, H. Numerical investigation of tip clearance effects on rotating instability of a low-speed compressor, Aerosp Sci Technol, 2021, 111, p 106540. doi: 10.1016/j.ast.2021.106540.Google Scholar
Ye, S., Zhao, Q., Zhou, X., Xi, G. and Xu, J. The impact of circumferential casing grooves on rotating instability in a transonic axial compressor, Proc Inst Mech Eng Part G J Aerosp Eng, 2018, 233, pp 28682893. doi: 10.1177/0954410018786094.Google Scholar
Zou, W., He, X., Zhang, W., Niu, Z. and Zheng, X. Roles of vanes in diffuser on stability of centrifugal compressor, Proc Inst Mech Eng Part G J Aerosp Eng, 2019, 233, 53805392. doi: 10.1177/0954410019844433.Google Scholar
He, X. and Zheng, X. Roles and mechanisms of casing treatment on different scales of flow instability in high pressure ratio centrifugal compressors, Aerosp Sci Technol, 2019, 84, pp 734746. doi: 10.1016/j.ast.2018.10.015.CrossRefGoogle Scholar
Wang, Z., Lu, B., Liu, J. and Hu, J. Numerical simulation of unsteady tip clearance flow in a transonic compressor rotor, Aerosp Sci Technol, 2018, 72, pp 193203. doi: 10.1016/j.ast.2017.11.012.Google Scholar
Holzinger, F., Wartzek, F., Schiffer, H.-P., Leichtfuss, S. and Nestle, M. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance, J Turbomach, 2015, 138. doi: 10.1115/1.4032042.Google Scholar
Wu, Y., An, G. and Wang, B. Numerical investigation into the underlying mechanism connecting the vortex breakdown to the flow unsteadiness in a transonic compressor rotor, Aerosp Sci Technol, 2019, 86, pp 106118. doi:https://doi.org/10.1016/j.ast.2018.12.040.CrossRefGoogle Scholar
Eck, M., Rückert, R., Peitsch, D. and Lehmann, M. Prestall instability in axial flow compressors, J Turbomach, 2020, 142. doi: 10.1115/1.4046447.Google Scholar
Wang, W., Yang, C., Hu, C. and Zhang, H. Investigation of tip leakage flow unsteadiness and rotating instability in a centrifugal compressor impeller, Proc Inst Mech Eng Part D J Automob Eng, 2021, 09544070211025902. doi: 10.1177/09544070211025902.Google Scholar
Lin, F., Chen, J. and Li, M. Wavelet analysis of rotor-tip disturbances in an axial-flow compressor, J Propuls Power, 2004, 20, pp 319334. doi: 10.2514/1.9257.Google Scholar
Lin, F., Li, M. and Chen, J. Long-to-short length-scale transition: A stall inception phenomenon in an axial compressor with inlet distortion, J Turbomach, 2005, 128, pp 130140. doi: 10.1115/1.2098808.Google Scholar
Cameron, J.D. and Morris, S.C. Analysis of axial compressor stall inception using unsteady casing pressure measurements, J Turbomach, 2012, 135. doi: 10.1115/1.4006777.Google Scholar
Toge, T.D. and Pradeep, A.M. Experimental investigation of stall inception of a low speed contra rotating axial flow fan under circumferential distorted flow condition, Aerosp Sci Technol, 2017, 70, pp 534548. doi: 10.1016/j.ast.2017.08.041.CrossRefGoogle Scholar
Dejene Toge, T. and Pradeep, A.M. Experimental investigation of stall inception mechanisms of low speed contra rotating axial flow fan stage, Int J Rotating Mach, 2015, 2015, p 641601. doi: 10.1155/2015/641601.Google Scholar
Liu, Y., Li, J., Du, J., Zhang, H. and Nie, C. Reliability analysis for stall warning methods in an axial flow compressor, Aerosp Sci Technol, 2021, 115, p. 106816. doi: 10.1016/j.ast.2021.106816.Google Scholar
Niccolini Marmont Du Haut Champ, C.A., Ferrari, M.L., Silvestri, P. and Massardo, A.F. Signal processing techniques to detect centrifugal compressors instabilities in large volume power plants, ASME Turbo Expo 2020 Turbomach. Tech. Conf. Expo. (2020). doi: 10.1115/GT2020-14795.Google Scholar
Li, H., Zheng, Q., Chen, Z., Duan, Y., Jiang, B. and Benini, E. The role of radial secondary flow in the process of rotating stall for a 1.5-stage axial compressor, Aerosp Sci Technol, 2021, 115, p. 106752. doi: 10.1016/j.ast.2021.106752.Google Scholar
Li, J., Du, J., Liu, Y., Zhang, H. and Nie, C. Effect of inlet radial distortion on aerodynamic stability in a multi-stage axial flow compressor, Aerosp Sci Technol, 2020, 105, p. 105886. doi: 10.1016/j.ast.2020.105886.Google Scholar
Manas, M.P. and Pradeep, A.M. Stall inception in a contra-rotating fan under radially distorted inflows, Aerosp Sci Technol, 2020, 105, p 105909. doi: 10.1016/j.ast.2020.105909.Google Scholar
Manas, M.P. and Pradeep, A.M. Stall inception mechanisms in a contra-rotating fan operating at different speed combinations, Proc Inst Mech Eng Part A J Power Energy, 2019, 234, pp 10411052. doi: 10.1177/0957650919893831.Google Scholar
Wang, J., Chen, J., Dong, G. and Hua, H. Wavelet features and hidden Markov model-based aerodynamic instability detection for compressors, J Turbomach, 2019, 141. doi: 10.1115/1.4044495.Google Scholar
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. and Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc Math Phys Eng Sci, 1998, 454, pp 903995. http://www.jstor.org/stable/53161.Google Scholar
Li, C., Lei, Y. and Fu, R. Aerodynamic instability detection in compressor based on Hilbert-Huang transform, 2011 IEEE International Conference on Computer Science and Automation Engineering, 2011, pp 355–358. doi: 10.1109/CSAE.2011.5952867.Google Scholar
Wu, X., Liu, Y., Liu, R. and Zhao, L. Surge detection methods using empirical mode decomposition and continuous wavelet transform for a centrifugal compressor, J Mech Sci Technol, 2016, 30, pp 15331536. doi: 10.1007/s12206-016-0307-2.Google Scholar
Zhao, J., Xi, G., Wang, Z. and Zhao, Y. The unsteady pre-stall behavior of the spike-type rotating stall within an airfoil Vaned-diffuser, ASME Turbo Expo 2018 Turbomach. Tech. Conf. Expo., 2018. doi: 10.1115/GT2018-76145.Google Scholar
Liu, Y., Ma, K., He, H. and Gao, K. Obtaining information about operation of centrifugal compressor from pressure by combining EEMD and IMFE, Entropy, 2020, 22. doi: 10.3390/e22040424.Google ScholarPubMed
Guan, D., Sun, D., Xu, R., Bishop, D., Sun, X., Ni, S., Du, J. and Zhao, D. Experimental investigation on axial compressor stall phenomena using aeroacoustics measurements via empirical mode and proper orthogonal decomposition methods, Aerosp Sci Technol, 2021, 112, p. 106655. doi: 10.1016/j.ast.2021.106655.Google Scholar
Yue, S., Wang, Y., Wei, L., Zhang, Z. and Wang, H. The joint empirical mode decomposition-local mean decomposition method and its application to time series of compressor stall process, Aerosp Sci Technol, 2020, 105, p. 105969. doi: 10.1016/j.ast.2020.105969.Google Scholar
Dragomiretskiy, K. and Zosso, D. Variational mode decomposition, IEEE Trans Signal Process, 2014, 62, pp 531544. doi: 10.1109/TSP.2013.2288675.Google Scholar
Hu, C., Yang, C., Yi, W., Zheng, S., Zou, R. and Zhou, M. Influence of shroud profiling on the compressor diffuser: Frozen-eddy approach and mode decomposition, Int J Mech Sci, 2020, 178, p 105623. doi: 10.1016/j.ijmecsci.2020.105623.Google Scholar
Yang, C., Fu, L., Hu, C. and Shi, X. Modelling and dynamic mode analysis of compressor impeller spike-type stall with global stability approach, Int J Mech Sci, 2021, 201, p. 106486. doi: 10.1016/j.ijmecsci.2021.106486.Google Scholar
Dodds, J. and Vahdati, M. Rotating stall observations in a high speed compressor—Part II: Numerical study, J Turbomach, 137, 2015. doi: 10.1115/1.4028558.Google Scholar
Pullan, G., Young, A.M., Day, I.J., Greitzer, E.M. and Spakovszky, Z.S. Origins and structure of spike-type rotating stall, J Turbomach., 2015, 137. doi: 10.1115/1.4028494.CrossRefGoogle Scholar
Zheng, X. and Liu, A. Experimental investigation of surge and stall in a high-speed centrifugal compressor, J Propuls Power, 2015, 31, pp 815825. doi: 10.2514/1.B35448.Google Scholar
Zheng, X., Sun, Z., Kawakubo, T. and Tamaki, H. Experimental investigation of surge and stall in a turbocharger centrifugal compressor with a Vaned diffuser, Exp Therm Fluid Sci, 2017, 82, pp 493506. doi: 10.1016/j.expthermflusci.2016.11.036.CrossRefGoogle Scholar
Yang, C., Wang, Y., Tong, D., Yang, C. and Li, Y. Stall inception induced by the volute tongue at centrifugal compressor inlet, Proc Inst Mech Eng Part G J Aerosp Eng, 2016, 231, pp 931940. doi: 10.1177/0954410016645127.Google Scholar
Yang, C., Wang, W., Zhang, H., Yang, C. and Li, Y. Investigation of stall process flow field in transonic centrifugal compressor with volute, Aerosp Sci Technol, 2018, 81, pp 5364. doi: 10.1016/j.ast.2018.07.047.CrossRefGoogle Scholar
Zhang, H., Yang, C., Wang, W., Chen, J. and Qi, M. Investigation on the casing static pressure distribution and stall behaviors in a centrifugal compressor with volute, Int J Mech Sci, 2019, 160, pp 318331. doi: 10.1016/j.ijmecsci.2019.06.043.Google Scholar