Hostname: page-component-68c7f8b79f-rgmxm Total loading time: 0 Render date: 2025-12-17T23:26:27.364Z Has data issue: false hasContentIssue false

Flow control over the trailing edge of a NACA0015 aerofoil by the effect of a DBD plasma-induced vertical flow

Published online by Cambridge University Press:  17 December 2025

H. Mahdavi*
Affiliation:
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
R. Abdollahi
Affiliation:
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
M. Mani
Affiliation:
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
*
Corresponding author: Hoda Mahdavi; Email: hoda.mahdavi65@gmail.com

Abstract

The electrohydrodynamic force of a surface dielectric barrier discharge (SDBD) has been well-developed for flow control applications during recent decades. In the present paper, a geometrical modification of the SDBD plasma actuator has been applied to induce a vectorised normal flow at the trailing edge of a NACA0015 aerofoil. The pitot-tube velocity measurements of the normal jet along its propagation direction revealed formation of vortices at the centre of the electrode distance played a role in flow control authority of the jet. The aerodynamic operation of the double-SDBD structure as a virtual flap was assessed versus a single counter-flow jet of a floating structure at pre- and post-stall angles of attack at low Reynolds numbers. It was found that at small angles of attack, the steady counter-flow gives the most effectiveness of lift enhancement in low velocity, whereas in the higher velocity the unsteady one results in more efficacy. The efficiency of both steady and unsteady normal jets increased considerably at high angles such that a lift coefficient improvement of 38% was achieved at $\alpha = 14^\circ $. In the higher velocity, the plasma induced vertical flow acts like a Gurney flap, causing lift increase at high angles by affecting the vortical structures at the trailing edge. Evaluating the obtained results recommended employment of the induced normal flow as a virtual flap at high angles of attack in the unsteady actuation mode.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdollahzadeh, M., et al. Comparison of DBD plasma actuators flow control authority in different modes of actuation, Aerospace Sci. Technol., 2018, 78, pp 183196.10.1016/j.ast.2018.04.013CrossRefGoogle Scholar
Abdullah, M., et al. Application of deswirl device in cyclone dust separator, ASEAN J. Sci. Technol. Develop., 2017, 20, (3), pp 203216.10.29037/ajstd.354CrossRefGoogle Scholar
Abe, T., et al. A parametric experimental study for momentum transfer by plasma actuator, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.10.2514/6.2007-187CrossRefGoogle Scholar
Akansu, Y.E., et al. Active control of flow around NACA 0015 airfoil by using DBD plasma actuator, EPJ Web of Conferences, 2013, 45, p 01008.10.1051/epjconf/20134501008CrossRefGoogle Scholar
Akbıyı k, H., et al. Active control of flow around a circular cylinder by using intermittent DBD plasma actuators, Flow Meas. Instrum., 2017, 53, pp 215220.10.1016/j.flowmeasinst.2016.12.008CrossRefGoogle Scholar
Bénard, N., et al. Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator, J. Electrostat., 2009, 67, (2-3), pp 133139.10.1016/j.elstat.2009.01.008CrossRefGoogle Scholar
Benard, N., et al. A directional plasma-jet device generated by double DBD actuators: an active vortex generator for aerodynamic flow control, 4th Flow Control Conference, 2008.10.2514/6.2008-3763CrossRefGoogle Scholar
Benard, N. and Moreau, E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator, Appl. Phys. Lett., 2012, 100, (19). p 193503.10.1063/1.4712125CrossRefGoogle Scholar
Benard, N. and Moreau, E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control, Exp. Fluids, 2014, 55, (11), p 1846.10.1007/s00348-014-1846-xCrossRefGoogle Scholar
Benard, N., et al. Highly time-resolved investigation of the electric wind caused by surface DBD at various ac frequencies, J. Electrostat., 2017, 88, pp 4148.10.1016/j.elstat.2017.01.018CrossRefGoogle Scholar
Boeuf, J.-P., et al. Electrohydrodynamic force in dielectric barrier discharge plasma actuators, J. Phys. D: Appl. Phys., 2007, 40, (3), p 652.10.1088/0022-3727/40/3/S03CrossRefGoogle Scholar
Borghi, C.A., et al. Duty cycle and directional jet effects of a plasma actuator on the flow control around a NACA0015 airfoil, Meccanica, 2017, 52, (15), pp 36613674.10.1007/s11012-017-0692-3CrossRefGoogle Scholar
Borghi, C.A., et al. Wind tunnel experiments on a NACA0015 airfoil equipped with vectorizable dielectric barrier discharge plasma actuators, 32nd AIAA Applied Aerodynamics Conference, 2014.10.2514/6.2014-2684CrossRefGoogle Scholar
Chiekh, M.B., et al. Synthetic jet control for flows in a diffuser: vectoring, spreading and mixing enhancement, J. Turbul., 2003, 4, (1), p 032.10.1088/1468-5248/4/1/032CrossRefGoogle Scholar
Corke, T. and Post, M. Overview of plasma flow control: concepts, optimization, and applications, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.10.2514/6.2005-563CrossRefGoogle Scholar
Corke, T.C., et al. Dielectric barrier discharge plasma actuators for flow control, Ann. Rev. Fluid Mech., 2010, 42, (1), pp 505529.10.1146/annurev-fluid-121108-145550CrossRefGoogle Scholar
Debien, A., et al. Streamer inhibition for improving force and electric wind produced by DBD actuators, J. Phys. D: Appl. Phys., 2012, 45, (21), p 215201.10.1088/0022-3727/45/21/215201CrossRefGoogle Scholar
Durbin, P.A. and Reif, B.P. Statistical Theory and Modeling for Turbulent Flows, John Wiley & Sons, 2011, United Kingdom.Google Scholar
Enloe, C.L., et al. Mechanisms and responses of a dielectric barrier plasma actuator: Geometric effects, AIAA J., 2004, 42, (3), pp 595604.10.2514/1.3884CrossRefGoogle Scholar
Feng, L.-H., et al. Flow control over an airfoil using virtual Gurney flaps, J. Fluid Mech., 2015, 767, pp 595626.10.1017/jfm.2015.22CrossRefGoogle Scholar
Feng, L.-H., et al. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap, Exp. Fluids, 2012, 52, (6), pp 15331546.10.1007/s00348-012-1263-yCrossRefGoogle Scholar
Feng, L.-H., et al. Lift enhancement of an airfoil and an unmanned aerial vehicle by plasma Gurney flaps, AIAA J., 2017, 55, (5), pp 16221632.10.2514/1.J055426CrossRefGoogle Scholar
Fleming, S., et al. Separation control using vectoring plasma actuators, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.10.2514/6.2010-468CrossRefGoogle Scholar
Forte, M., et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control, Exp. Fluids, 2007, 43, (6), pp 917928.10.1007/s00348-007-0362-7CrossRefGoogle Scholar
Gad-el-Hak, M. Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, 2000. 10.1017/CBO9780511529535CrossRefGoogle Scholar
Gu, X., et al. Plasma Gurney flap flight control at low angle of attack, J. Aircraft, 2023, 60, (1), pp 172189.10.2514/1.C036702CrossRefGoogle Scholar
Guoqiang, L., et al. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator, Energy, 2019, 185, pp 90101.10.1016/j.energy.2019.07.017CrossRefGoogle Scholar
He, C., et al. Plasma flaps and slats: an application of weakly ionized plasma actuators, J. Aircraft, 2009, 46, (3), pp 864873.10.2514/1.38232CrossRefGoogle Scholar
Im, S., et al. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow, Appl. Phys. Lett., 2010, 97, (4), 041503.10.1063/1.3473820CrossRefGoogle Scholar
Jukes, T.N. and Choi, K.-S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma, Phys. Fluids, 2009, 21, (8), 084103.Google Scholar
Kotsonis, M. Diagnostics for characterisation of plasma actuators, Meas. Sci. Technol., 2015, 26, (9), 092001.10.1088/0957-0233/26/9/092001CrossRefGoogle Scholar
Kotsonis, M. and Veldhuis, L. Experimental study on dielectric barrier discharge actuators operating in pulse mode, J. Appl. Phys., 2010, 108, (11), 113304.10.1063/1.3517453CrossRefGoogle Scholar
Kriegseis, J., et al. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators, J. Appl. Phys., 2011, 110, (1), 013305.10.1063/1.3603030CrossRefGoogle Scholar
Little, J. and Samimy, M. High-lift airfoil separation with dielectric barrier discharge plasma actuation, AIAA J., 2010, 48, (12), pp 28842898.10.2514/1.J050452CrossRefGoogle Scholar
Mahdavi, H., et al. A single unsteady DBD plasma actuator excited by applying two high voltages simultaneously for flow control, Phys. Plasmas, 2020, 27, (8), 083514.10.1063/5.0010069CrossRefGoogle Scholar
Mahdavi, H., et al. An experimental investigation of the unsteady counter-flow generated by a DBD plasma actuator for flow control, Eur. Phys. J. Plus, 2024, 139, (6), 550.10.1140/epjp/s13360-024-05341-6CrossRefGoogle Scholar
Mahdavi, H. and Sohbatzadeh, F. The effects of applying different bias voltages and phase differences on performance of an asymmetric surface dielectric barrier discharge; an experimental investigation, J. Theoret. Appl. Phys., 2019, 13, (3), pp 165177.10.1007/s40094-019-0334-3CrossRefGoogle Scholar
Mahdavi, H. and Sohbatzadeh, F. The role of nonlinear body force in production of electric wind in an asymmetric surface dielectric barrier discharge, Phys. Scr., 2019, 94, (8), p 085204.10.1088/1402-4896/ab0e17CrossRefGoogle Scholar
Meng, X., et al. Lift improvements using duty-cycled plasma actuation at low Reynolds numbers, Aerospace Sci. Technol., 2018, 72, pp 123133.10.1016/j.ast.2017.10.038CrossRefGoogle Scholar
Messanelli, F. and Belan, M. A comparison between corona and DBD plasma actuators for separation control on an airfoil, 55th AIAA Aerospace Sciences Meeting, 2017.10.2514/6.2017-0395CrossRefGoogle Scholar
Mittal, R. and Rampunggoon, P. On the virtual aeroshaping effect of synthetic jets, Phys. Fluids, 2002, 14, (4), pp 15331536.10.1063/1.1453470CrossRefGoogle Scholar
Moreau, E. Airflow control by non-thermal plasma actuators J. Phys. D: Appl. Phys., 2007, 40, (3), p 605.10.1088/0022-3727/40/3/S01CrossRefGoogle Scholar
Neretti, G., et al. Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array, J. Appl. Phys., 2014, 115, (16), 163304.10.1063/1.4873896CrossRefGoogle Scholar
Neretti, G., et al. Experimental results in DBD plasma actuators for air flow control, IEEE Trans. Plasma Sci., 2012, 40, (6), pp 16781687.10.1109/TPS.2012.2191801CrossRefGoogle Scholar
Neretti, G., et al. Geometry optimization of linear and annular plasma synthetic jet actuators, J. Phys. D: Appl. Phys., 2016, 50, (1), p 015210.10.1088/1361-6463/50/1/015210CrossRefGoogle Scholar
Pouryoussefi, S.G., et al. Experimental investigation of separation bubble control on an iced airfoil using plasma actuator, Appl. Therm. Eng., 2016, 100, pp 13341341.10.1016/j.applthermaleng.2016.02.133CrossRefGoogle Scholar
Pouryoussefi, S.G., et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil, Chin. J. Aeronaut., 2016, 29, (3), pp 585595.10.1016/j.cja.2016.03.002CrossRefGoogle Scholar
Roth, J., et al. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.10.2514/6.1998-328CrossRefGoogle Scholar
Roth, J.R. Industrial Plasma Engineering: Volume 2: Applications to Nonthermal Plasma Processing, CRC Press, 2001, New York.10.1201/9781420034127CrossRefGoogle Scholar
Roth, J.R., et al. Electrohydrodynamic flow control with a glow-discharge surface plasma, AIAA J., 2000, 38, (7), pp 11661172.10.2514/2.1110CrossRefGoogle Scholar
Santhanakrishnan, A. Characterization and flow physics of plasma synthetic jet actuators. Mechanical Engineering, University of Kentucky. Doctor of Philosophy (PhD), 2007.Google Scholar
Santhanakrishnan, A. and Jacob, J. On plasma synthetic jet actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006.10.2514/6.2006-317CrossRefGoogle Scholar
Santhanakrishnan, A. and Jacob, J.D. Flow control with plasma synthetic jet actuators, J. Phys. D: Appl. Phys., 2007, 40, (3), p 637.10.1088/0022-3727/40/3/S02CrossRefGoogle Scholar
Santhanakrishnan, A., et al. Characterization of linear plasma synthetic jet actuators in an initially quiescent medium, Phys. Fluids, 2009, 21, (4), 043602 .10.1063/1.3097004CrossRefGoogle Scholar
Singhal, A., et al. Unsteady flow separation control over a NACA 0015 using NS-DBD plasma actuators, 55th AIAA Aerospace Sciences Meeting, 2017.10.2514/6.2017-1687CrossRefGoogle Scholar
Thomas, F., et al. Turbulent drag reduction using pulsed-DC plasma actuation, J. Phys. D: Appl. Phys., 2019, 52, (43), p 434001.10.1088/1361-6463/ab3388CrossRefGoogle Scholar
Thomas, F.O., et al. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control, AIAA J., 2009, 47, (9), pp 21692178.10.2514/1.41588CrossRefGoogle Scholar
Van Dyken, R., et al. Parametric investigations of a single dielectric barrier plasma actuator, 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.10.2514/6.2004-846CrossRefGoogle Scholar
Wang, J.-J., et al. Recent developments in DBD plasma flow control, Prog. Aerospace Sci., 2013, 62, pp 5278.10.1016/j.paerosci.2013.05.003CrossRefGoogle Scholar
Whalley, R. and Choi, K.-S. Starting, traveling, and colliding vortices: Dielectric-barrier-discharge plasma in quiescent air, Phys. Fluids, 2010, 22, (9), 091105.10.1063/1.3481439CrossRefGoogle Scholar
Yan, X., et al. Noise control of blunt flat-plate using slit and dielectric barrier discharge Plasma, AIAA J., 2024, 62, (7), pp 25742588.10.2514/1.J063259CrossRefGoogle Scholar
Yang, L., et al. Lift augmentation based on flap deflection with dielectric barrier discharge plasma flow control over multi-element airfoils, J. Fluids Eng., 2016, 138, (3), p 031401.10.1115/1.4031613CrossRefGoogle Scholar
Zaki, M.A. Physics based modeling of axial compressor stall, Georgia Institute of Technology, Ph.D, 2009.Google Scholar
Zanon, A. A vortex panel method for VAWT in dynamics stall, AIT Austrian Institute of Technology. Ph.D, 2011.Google Scholar
Zhang, P., et al. The effect of actuation frequency on the plasma synthetic jet, Sci. China Technol. Sci., 2011, 54, (11), pp 29452950.10.1007/s11431-011-4546-2CrossRefGoogle Scholar
Zhang, P., et al. Aerodynamic modification of NACA 0012 airfoil by trailing-edge plasma gurney flap, AIAA J., 2009, 47, (10), pp 24672474.10.2514/1.43379CrossRefGoogle Scholar
Zhang, Z., et al. Gurney-flap drag penalty reduction with a DBD plasma actuator, J. Aerospace Eng., 2017, 30, (5), p 04017060.10.1061/(ASCE)AS.1943-5525.0000769CrossRefGoogle Scholar
Zhang, Z., et al. Experimental research on multichannel discharge circuit and multi-electrode plasma synthetic jet actuator, J. Phys. D: Appl. Phys., 2017, 50, (16), p 165205.10.1088/1361-6463/aa6372CrossRefGoogle Scholar
Zong, H., et al. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number, Exp. Fluids, 2018, 59, (11), p 169.10.1007/s00348-018-2624-yCrossRefGoogle Scholar