Article contents
Integration of high bypass ratio engines on modern transonic wings for regional aircraft
Published online by Cambridge University Press: 04 July 2016
Abstract
Changing airline scenarios and aggravated congestion have led to an increasing demand for new regional aircraft which will cover ranges of more than 1500 nm and accommodate 80 to 130 passengers. These far exceed the capability of today's commuter types. In the required thrust range of 15-5-20 klb only a very limited number of older engines with high SFC is available. Recently the manufacturers have begun offering new turbofans based on modern core technology and internal mixing (long duct) with lower SFC.
The underwing turbofan installation aspects are well understood from earlier wide and narrowbody aircraft but installing a long-duct nacelle on such a small aircraft means a significant increase in interference problems which may lead to close coupling and new methods for minimisation of the mutual interference.
After a survey of installation problems on previous jet transports up to the Airbus family the state of the art of experimental and theoretical methods for interference analysis is discussed. By means of an inverse design method a local lofting change on a given wing design confined to 20% span area was derived in order to sustain the isobar pattern of the clean wing with the pod/pylon on.
The design modification was checked by means of a 3D-Euler code and verified on a large half-model in the NLR-HST wind tunnel. From the analysis of the resulting conclusions concerning the feasibility of such a lofting change, further improvements are made.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 1993
References
- 1
- Cited by