Published online by Cambridge University Press: 27 January 2016
The analysis of risks per phases of flight is fundamental for safe helicopter operations, of which night-time offshore oil- and gas-related missions form an important part. The safe execution of such missions also depends on pilots’ recent flying practice and a stable visual approach segment prior to landing. However, the poor quality of the safety data currently available prevents accurate analysis of risk on a per-phase-of-flight basis, establishment of a meaningful flying recency requirement and identification of any preferable visual approach design. To redress these problems, this paper develops a bespoke taxonomy of phases of offshore helicopter flights and uses it as the basis for a questionnaire survey on the phase-specific risk levels experienced by pilots in the night-time, perceived optimal flying recency requirement and preferred visual approach design. With the responses obtained from pilots located in seven countries, extensive statistical hypothesis testing shows that the phases involving visual scan techniques at high speed regimes are problematic, especially the visual segment of instrument approaches. Moreover, the between-night-flights time gaps required for assured flying recency were found considerably shorter than currently standardised across the industry. Finally, no preferred visual approach technique was identified. A number of important implications have been highlighted and should form the basis for future safety interventions.