Hostname: page-component-68c7f8b79f-kbpd8 Total loading time: 0 Render date: 2025-12-18T15:57:40.271Z Has data issue: false hasContentIssue false

Noise modeling of F22-A fighter jet using metaheuristic methods

Published online by Cambridge University Press:  12 December 2025

R. Oruc
Affiliation:
Civil Aviation Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
T. Baklacioglu*
Affiliation:
Aerospace Engineering, Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, Turkey
O. Sahin
Affiliation:
Air Traffic Control, Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, Turkey
H. A. Ozkan
Affiliation:
Electrical and Electronics Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, Turkey
*
Corresponding author: T. Baklacioglu; Email: tbaklacioglu@eskisehir.edu.tr

Abstract

The noise levels produced by high-performance supersonic military aircraft engines significantly exceed those of civilian aircraft, highlighting the critical importance of predicting military aircraft noise levels. This paper shows the modeling and assessment of the correlation between sound frequency and sound pressure level (SPL) using particle awarm optimisation (PSO) and the cuckoo search algorithm (CSA) for the high-performance fighter aircraft F-22 Raptor. The developed model aims to predict noise with high precision at various microphone angles from 60° to 150°. As a result of the analysis, the MAPE value for CSA was found to be below 1% for 10 different inlet angles, while the maximum mean absolute percentage error (MAPE) for PSO was 1.7863%. The large dataset ranging from 238 to 762 data points are used and the minimal error values confirm the high accuracy of the model. Additionally, the PSO and CSA algorithms were compared indirectly. The lower error values for CSA, along with its correlation coefficient (R) values closer to 1 indicate that the CSA method gives better results than PSO.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Licitra, G., Gagliardi, P., Fredianelli, L. and Simonetti, D. Noise mitigation action plan of Pisa civil and military airport and its effects on people exposure, Appl. Acoust., 2014, 84, pp 2536. https://doi.org/10.1016/j.apacoust.2014.02.020 CrossRefGoogle Scholar
Bertsch, L. and Isermann, U. Noise prediction toolbox used by the DLR aircraft noise working group, 42nd Int. Congr. Expo. Noise Control Eng. 2013, INTER-NOISE 2013 Noise Control Qual. Life, 2013, pp 805813.Google Scholar
Thoma, E.M., Grönstedt, T., Sola, E.O. and Zhao, X., Assessment of an open-source aircraft noise prediction model using approach phase measurements, J. Aircr., 2024, 61, pp 745760. https://doi.org/10.2514/1.C037332 CrossRefGoogle Scholar
Feng, H., Zhou, Y., Zeng, W. and Guo, W. A physics-based PSO-BPNN model for civil aircraft noise assessment, Appl. Acoust., 2024, 221, p 109992. https://doi.org/10.1016/j.apacoust.2024.109992 CrossRefGoogle Scholar
Feng, H., Zhou, Y., Zeng, W. and Ding, C. Review on metrics and prediction methods of civil aviation noise, Int. J. Aeronaut. Sp. Sci., 2023, 24, pp 11991213. https://doi.org/10.1007/s42405-023-00609-0 CrossRefGoogle Scholar
Sari, D., Ozkurt, N., Akdag, A., Kutukoglu, M. and Gurarslan, A. Measuring the levels of noise at the Istanbul Atatürk airport and comparisons with model simulations, Sci. Total Environ., 2014, 482–483, pp 472479. https://doi.org/10.1016/j.scitotenv.2013.07.091 CrossRefGoogle ScholarPubMed
Pretto, M., Giannattasio, P., De Gennaro, M., Zanon, A. and Kuehnelt, H. Forecasts of future scenarios for airport noise based on collection and processing of web data, Eur. Transp. Res. Rev., 2020, 12, pp 114. https://doi.org/10.1186/s12544-019-0389-x CrossRefGoogle Scholar
Pretto, M., Giannattasio, P., De Gennaro, M., Zanon, A. and Kühnelt, H. Web data for computing real-world noise from civil aviation, Transp. Res. Part D Transp. Environ., 2019, 69, pp 224249. https://doi.org/10.1016/j.trd.2019.01.022 CrossRefGoogle Scholar
Pretto, M., Giannattasio, P. and De Gennaro, M. Mixed analysis-synthesis approach for estimating airport noise from civil air traffic, Transp. Res. Part D Transp. Environ., 2022, 106, p 103248. https://doi.org/10.1016/j.trd.2022.103248 CrossRefGoogle Scholar
Nr Bundesanzeiger., Instructions on the acquisition of data on flight operations and the calculation of noise protection areas, 2008 195a.Google Scholar
Boeker, E.R., Dinges, E., He, B., Fleming, G., Roof, C.J., Gerbi, P.J. and Herman, J. Integrated noise model (INM) version 7.0 technical manual (No. FAA-AEE-08-01), 2008.Google Scholar
Bertsch, L. Noise prediction within conceptual aircraft design dissertation, DLR res. Rep., 2013.Google Scholar
Thomas, J.L. and Hansman, R.J. Framework for analyzing aircraft community noise impacts of advanced operational flight procedures, J. Aircr., 2019, pp 14071417. https://doi.org/10.2514/1.C035100 CrossRefGoogle Scholar
Thomas, J. and Hansman, R.J. Modeling, assessment, and flight demonstration of delayed deceleration approaches for community noise reduction, AIAA Aviat., 2020 FORUM, 2020, p 2874. https://doi.org/10.2514/6.2020-2874 Google Scholar
Bertsch, L., Dobrzynski, W. and Guérin, S. Tool development for low-noise aircraft design, J. Aircr., 2010, 47, pp 694699. https://doi.org/10.2514/1.43188 CrossRefGoogle Scholar
Vieira, A., von den Hoff, B., Snellen, M. and Simons, D.G., Comparison of semi-empirical noise models with flyover measurements of operating aircraft, J. Aircr., 2022, 59, pp 15741587. https://doi.org/10.2514/1.C036387 CrossRefGoogle Scholar
Thomas, R.H., Burley, C.L., Guo, Y., Progress of aircraft system noise assessment with uncertainty quantification for the environmentally responsible aviation project, 22nd AIAA/CEAS Aeroacoustics Conf. 2016, 2016, p 3040. https://doi.org/10.2514/6.2016-3040 Google Scholar
Malbéqui, P., Rozenberg, Y., Bulté, J., Aircraft noise modelling and assessment in the IESTA program, 40th Int. Congr. Expo. Noise Control Eng., 2011, INTER-NOISE 2011, pp 541546.Google Scholar
Zorumski, W.E. Aircraft noise prediction program theoretical manual, NASA Tech. Memo. 1982.Google Scholar
Zellmann, C., Schäffer, B., Wunderli, J.M., Isermann, U. and Paschereit, C.O. Aircraft noise emission model accounting for aircraft flight parameters, J. Aircr., 2018, pp 682695. https://doi.org/10.2514/1.C034275 CrossRefGoogle Scholar
Jäger, D., Zellmann, C., Schlatter, F. and Wunderli, J.M. Validation of the sonAIR aircraft noise simulation model, Noise Mapp., 2021, 8, pp 95107https://doi.org/10.1515/noise-2021-0007 CrossRefGoogle Scholar
Revoredo, T., Mora-Camino, F. and Slama, J. A two-step approach for the prediction of dynamic aircraft noise impact, Aerosp. Sci. Technol., 2016, 59, pp 122131. https://doi.org/10.1016/j.ast.2016.10.017 CrossRefGoogle Scholar
Gagliardi, P., Teti, L. and Licitra, G. A statistical evaluation on flight operational characteristics affecting aircraft noise during take-off, Appl. Acoust., 2018, 134, pp 815. https://doi.org/10.1016/j.apacoust.2017.12.024 CrossRefGoogle Scholar
Ozgul, A.S. and Aydin, E. Hearing and noise-induced hearing loss in aviation, J. Ear Nose Throat Head Neck Surg., 2013, 21, pp 4754.Google Scholar
Tam, C.K.W. and Parrish, S.A. Noise of high-performance aircraft at afterburner, J. Sound Vib., 2015, 352, pp 103128. https://doi.org/10.1016/j.jsv.2015.04.010 CrossRefGoogle Scholar
Wall, A.T., Gee, K.L., James, M.M., Bradley, K.A., McInerny, S.A. and Neilsen, T.B. Near-field noise measurements of a high-performance military jet aircraft, Noise Control Eng. J., 2012, 60, pp 421434. https://doi.org/10.3397/1.3701021 CrossRefGoogle Scholar
Amargianitakis, D.C., Self, R.H., Synodinos, A.P., Proença, A.R. and Martinez, A.J.T. Closed-form analytical approach for calculating noise contours of directive aircraft noise sources, AIAA J., 2023, 61, pp 17351748. https://doi.org/10.2514/1.J062033 CrossRefGoogle Scholar
Wall, A.T. The characterization of military aircraft jet noise using near-field acoustical holography methods, Brigham Young University, 2013.Google Scholar
Leete, K.M., Wall, A.T., Gee, K.L., Neilsen, T.B., James, M.M. and Downing, J.M. Acoustical holography-based analysis of Spatiospectral lobes in high-performance aircraft jet noise, AIAA J., 2021, 59, pp 41664178. https://doi.org/10.2514/1.J059400 CrossRefGoogle Scholar
Morgan, J., Neilsen, T.B., Gee, K.L., Wall, A.T. and James, M.M. Simple-source model of military jet aircraft noise Noise Control Eng. J., 2012, 60, pp 435449. https://doi.org/10.3397/1.3701022 CrossRefGoogle Scholar
Vaughn, A.B., Neilsen, T.B., Gee, K.L., Wall, A.T., Micah Downing, J. and James, M.M. Broadband shock-associated noise from a high-performance military aircraft, J. Acoust. Soc. Am., 2018, 144, pp EL242EL247. https://doi.org/10.1121/1.5055392 CrossRefGoogle ScholarPubMed
Gee, K.L., Neilsen, T.B., Wall, A.T., Downing, J.M. and James, M.M. The “Sound Of Freedom”: characterizing jet noise from high-performance military aircraft, Acoust. Today, 2013, 9, pp 821. https://doi.org/10.1121/1.4821141 CrossRefGoogle Scholar
Neilsen, T.B., Vaughn, A.B., Gee, K.L., Swift, S.H., Wall, A.T., Downing, J.M. and James, M.M. Three-way spectral decompositions of high-performance military aircraft noise, AIAA J., 2019, 57, pp 34673479. https://doi.org/10.2514/1.J057992 CrossRefGoogle Scholar
Liu, J., Corrigan, A., Kailasanath, K. and Gutmark, E. Impact of chevrons on noise source characteristics in imperfectly expanded jet flows, 21st AIAA/CEAS Aeroacoustics Conf., 2015, p 2835. https://doi.org/10.2514/6.2015-2835 CrossRefGoogle Scholar
Liu, J., Kailasanath, K. and Gutmark, E. Similarity spectral analysis of highly heated supersonic jets using large-eddy simulations, AIAA SciTech Forum-55th AIAA Aerosp. Sci. Meet., 2017, p 0926. https://doi.org/10.2514/6.2017-0926 CrossRefGoogle Scholar
Liu, J., Corrigan, A., Kailasanath, K. and Taylor, B. Impact of the specific heat ratio on the noise generation in a high-temperature supersonic jet, 54th AIAA Aerosp. Sci. Meet., 2016, p 2125. https://doi.org/10.2514/6.2016-2125 CrossRefGoogle Scholar
Bres, G.A. and Lele, S.K. Modelling of jet noise: a perspective from large-eddy simulations, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2019, 377, pp 123. https://doi.org/10.1098/rsta.2019.0081 Google ScholarPubMed
Neilsen, T.B., Gee, K.L., Wall, A.T. and James, M.M. Similarity spectra analysis of high-performance jet aircraft noise, J. Acoust. Soc. Am., 2013, 133, pp 21162125. https://doi.org/10.1121/1.4792360 CrossRefGoogle ScholarPubMed
Yang, X.S. Algorithms, Nature-Inspired Optimization, 2014. https://doi.org/10.1016/C2013-0-01368-0 CrossRefGoogle Scholar
Oruc, R. and Baklacioglu, T. Modelling of fuel flow-rate of commercial aircraft for the climbing flight using cuckoo search algorithm, Aircr. Eng. Aerosp. Technol., 2020, 92, pp 495501. https://doi.org/10.1108/AEAT-10-2019-0202 CrossRefGoogle Scholar
Yang, X.S. and Deb, S. Engineering optimisation by cuckoo search, Int. J. Math. Model. Numer. Optim., 2010, 1, pp 330343. https://doi.org/10.1504/IJMMNO.2010.035430 Google Scholar
Joshi, A.S., Kulkarni, O., Kakandikar, G.M. and Nandedkar, V.M. Cuckoo search optimization-a review, Mater. Today Proc., 2017, 4, pp 72627269. https://doi.org/10.1016/j.matpr.2017.07.055 CrossRefGoogle Scholar
Gandomi, A.H., Yang, X.S., Alavi, A.H., Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 2013, 29, pp 1735. https://doi.org/10.1007/s00366-011-0241-y CrossRefGoogle Scholar
Yang, X.S. and Deb, S., Cuckoo search via Lévy flights, 2009 World Congr. Nat. Biol. Inspired Comput. NABIC 2009-Proc., IEEE, 2009, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690 CrossRefGoogle Scholar
Yurttav, G., Mutlu, T. and Baklacioglu, T. Drag polar modelling for jet aircraft using 6-DOF model data via cuckoo search algorithm, Aeronaut. J., 2025, 129, pp 627650.10.1017/aer.2024.84CrossRefGoogle Scholar
Kulkarni, N.K., Patekar, S., Bhoskar, T., Kulkarni, O., Kakandikar, G.M. and Nandedkar, V.M. Particle swarm optimization applications to mechanical engineering-a review, Mater. Today Proc., 2015, 2, pp 26312639. https://doi.org/10.1016/j.matpr.2015.07.223 CrossRefGoogle Scholar
Siddhartha, N. and Sharma, V. A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater, Energy, 2012, 38, pp 406413. https://doi.org/10.1016/j.energy.2011.11.026 CrossRefGoogle Scholar
Oruc, R. and Baklacioglu, T. Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods, Energy, 2023, 269, p 126819. https://doi.org/10.1016/j.energy.2023.126819 CrossRefGoogle Scholar
Oruc, R. and Baklacioglu, T. Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method, Energy, 2022, 259, p 125069. https://doi.org/10.1016/j.energy.2022.125069 CrossRefGoogle Scholar
Marini, F. and Walczak, B. Particle swarm optimization (PSO). a tutorial, Chemom. Intell. Lab. Syst., 2015, 149, pp 153165. https://doi.org/10.1016/j.chemolab.2015.08.020 CrossRefGoogle Scholar
Guglieri, G., Marguerettaz, P. and Simioni, G. A comparative study of parameter estimation techniques applied to jettisoned external stores, Aeronaut. J., 2014, 118, pp 601624. https://doi.org/10.1017/S0001924000009398 CrossRefGoogle Scholar
Khan, S., Grigorie, T.L., Botez, R.M., Mamou, M. and Mébarki, Y. Novel morphing wing actuator control-based Particle Swarm Optimisation, Aeronaut. J., 2020, 124, pp 5575https://doi.org/10.1017/aer.2019.114 CrossRefGoogle Scholar
Engelbrecht, A.P. Computational Intelligence: An Introduction: Second Edition, John Wiley & Sons, 2007. https://doi.org/10.1002/9780470512517 CrossRefGoogle Scholar
Dursun, O.O., Toraman, S. and Aygun, H. Deep learning approach for prediction of exergy and emission parameters of commercial high by-pass turbofan engines, Environ. Sci. Pollut. Res., 2023, 30, pp 2753927559. https://doi.org/10.1007/s11356-022-24109-y CrossRefGoogle ScholarPubMed
Toraman, S., Dursun, O.O. and Aygun, H. Prediction of noise of commercial aircraft based on itself specifications by using machine learning methods, J. Air Transp. Manag., 2025, 125, p 102779https://doi.org/10.1016/j.jairtraman.2025.102779 CrossRefGoogle Scholar
Oruc, R. Prediction of emission and exergy parameters of commercial high by-pass turbofan engines based on CSA-SVR model, J. Therm. Anal. Calorim., 2025, 150, pp 1012710139. https://doi.org/10.1007/s10973-025-14403-5 CrossRefGoogle Scholar
Oruc, R. and Baklacioglu, T. Propulsive modelling for JT9D-3, JT15D-4C and TF-30 turbofan engines using particle swarm optimization, Aircr. Eng. Aerosp. Technol., 2020, 92, pp 939946. https://doi.org/10.1108/AEAT-02-2020-0031 CrossRefGoogle Scholar
Gee, K.L., Gabrielson, T.B., Atchley, A.A. and Sparrow, V.W. Preliminary analysis of nonlinearity in military jet aircraft noise propagation, AIAA J., 2005, 43, pp 13981401https://doi.org/10.2514/1.10155 CrossRefGoogle Scholar