Published online by Cambridge University Press: 27 January 2016
Results from numerical simulations of the three dimensional flow in the intake-isolator of a dual mode scramjet are presented. The FANS calculations have utilised the SST k -ω turbulence model. The effect of cowl length and cowl convergence angle on the inlet mass capture ratio, flow distortion, shock strength and pressure rise are studied in detail. Three cowl lengths and four or five cowl convergence angles for each cowl length are considered. The predicted values of the dimensionless wall static pressure and inlet mass capture ratio are compared with experimental data reported in the literature. The numerical predictions are shown to agree well with the experimental data. In addition, details of the flow field such as shocks, expansion fans and shock boundary interaction are also captured accurately. Inlet unstart is also demonstrated for one case.