Hostname: page-component-784d4fb959-jtjl6 Total loading time: 0 Render date: 2025-07-14T20:02:23.579Z Has data issue: false hasContentIssue false

A review on advancement in strategies for low-NOx hydrogen combustion with micromix technology

Published online by Cambridge University Press:  11 July 2025

Sushant K. Bawne
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
Prasun Chakraborti
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
Paramvir Singh*
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Agartala, Agartala, Tripura 799046, India
*
Corresponding author: Paramvir Singh; Email: param016@gmail.com

Abstract

Micromix combustion technology emerges as a promising solution to address challenges in achieving clean combustion, particularly for hydrogen utilisation. This review provides a critical analysis for the potential of micromixing by delving into its core principles, diverse applications and the factors influencing its performance. The paper focuses on injector design, flame stabilisation and NOx mitigation strategies within the micromixing framework. Key findings include innovative burner designs, optimised air distribution techniques and the crucial role of fuel properties, especially for hydrogen combustion. The review highlights significant reductions in NOx emissions achieved through micromix combustion technology. For instance, NOx emissions were lowered to 2.2 ppm at φ = 0.4, representing a 45% improvement compared to conventional design configurations. Furthermore, a reduction of 40% in NOx emissions compared to standard configurations was observed at an equivalence ratio of 0.65. The study also compares NOx emissions between hydrogen and its blended fuels, showing lower emissions for methane. By highlighting the importance of optimising fuel mixture formation and flame stability for various operating conditions, this review underscores the significance of micromix combustion for advancing sustainable combustion technologies with low NOx emissions and reduced chance of flashback in hydrogen combustion.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Scheffknecht, G., Al-Makhadmeh, L., Schnell, U. and Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art, Int. J. Greenhouse Gas Control, 2011, 5, pp S16S35.10.1016/j.ijggc.2011.05.020CrossRefGoogle Scholar
Haglind, F., Hasselrot, A. and Singh, R. Potential of reducing the environmental impact of aviation by usinghydrogen Part II: Aero gas turbine design, Aeronaut. J., 2006, 110, pp 541552. 10.1017/S000192400000141XCrossRefGoogle Scholar
Michaud, M.G., Westmoreland, P.R. and Feitelberg, A.S. Chemical mechanisms of NOx formation for gas turbine conditions, In Symposium (international) on Combustion, pp 879887. Elsevier, 1992.Google Scholar
Chen, L., Msigwa, G., Yang, M., Osman, A.I., Fawzy, S., Rooney, D.W. and Yap, P.-S. Strategies to achieve a carbon neutral society: A review, Environ. Chem. Lett., 20, 2022, 22772310.10.1007/s10311-022-01435-8CrossRefGoogle ScholarPubMed
Cecere, D., Giacomazzi, E., Di Nardo, A. and Calchetti, G. Gas turbine combustion technologies for hydrogen blends, Energies (Basel), 2023, 16, p 6829.10.3390/en16196829CrossRefGoogle Scholar
Déparrois, N., Singh, P., Burra, K.G. and Gupta, A.K. Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2, Appl. Energy, 2019, 246, pp 110.10.1016/j.apenergy.2019.04.013CrossRefGoogle Scholar
Opeyemi, B.M. Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy, Energy, 2021, 228, p 120519.10.1016/j.energy.2021.120519CrossRefGoogle Scholar
Yue, C.-D., Liu, C.-M. and Liou, E.M.L. A transition toward a sustainable energy future: feasibility assessment and development strategies of wind power in Taiwan, Energy Policy, 2001, 29, pp 951963.10.1016/S0301-4215(01)00025-8CrossRefGoogle Scholar
Haglind, F., Hasselrot, A. and Singh, R. Potential of reducing the environmental impact of aviation by using hydrogen Part I: Background, prospects and challenges, Aeronaut. J., 2006, 110, pp 533540.10.1017/S000192400000141XCrossRefGoogle Scholar
Ghoniem, A.F. Needs, resources and climate change: Clean and efficient conversion technologies, Prog. Energy Combust. Sci., 2011, 37, pp 1551.10.1016/j.pecs.2010.02.006CrossRefGoogle Scholar
Khalil, A.E.E. and Gupta, A.K. Swirling distributed combustion for clean energy conversion in gas turbine applications, Appl. Energy, 2011, 88, pp 36853693.10.1016/j.apenergy.2011.03.048CrossRefGoogle Scholar
Funke, H.-W., Keinz, J., Kusterer, K., Ayed, A.H., Kazari, M., Kitajima, J., Horikawa, A. and Okada, K. Development and testing of a low NOx micromix combustion chamber for industrial gas turbines, Int. J. Gas Turb. Propul. Power Syst., 2017, 9, pp 2736.Google Scholar
Armaroli, N. and Balzani, V. The future of energy supply: Challenges and opportunities, Angew. Chem. Int. Ed., 2007, 46, pp 5266.10.1002/anie.200602373CrossRefGoogle ScholarPubMed
Babayev, R., Im, H.G., Andersson, A. and Johansson, B. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP, Energy Convers Manag., 2022, 264, p 115698.10.1016/j.enconman.2022.115698CrossRefGoogle Scholar
Caldeira, K., Jain, A.K. and Hoffert, M.I. Climate sensitivity uncertainty and the need for energy without CO2 emission, Science (1979), 2003, 299, pp 20522054.Google ScholarPubMed
Mourouzidis, C., Singh, G., Sun, X., Huete, J., Nalianda, D., Nikolaidis, T., Sethi, V., Rolt, A., Goodger, E. and Pilidis, P. Abating CO2 and non-CO2 emissions with hydrogen propulsion, Aeronaut. J., 2024, 128, pp 15761593.10.1017/aer.2024.20CrossRefGoogle Scholar
Lei, H. and Khandelwal, B. Hydrogen fuel for aviation, In Aviation Fuels, pp 237270. Elsevier, 2021.10.1016/B978-0-12-818314-4.00007-8CrossRefGoogle Scholar
Lopez-Ruiz, G., Alava, I. and Blanco, J.M. Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach. Energy, 2021, 236, p 121456.10.1016/j.energy.2021.121456CrossRefGoogle Scholar
Sun, X., Abbott, D., Vir Singh, A., Gauthier, P. and Sethi, B. Numerical investigation of potential cause of instabilities in a hydrogen micromix injector array, In Turbo Expo: Power for Land, Sea, and Air, p. V006T03A012. American Society of Mechanical Engineers, 2021.10.1115/GT2021-59842CrossRefGoogle Scholar
Funke, H.-W., Börner, S., Keinz, J., Kusterer, K., Kroniger, D., Kitajima, J., Kazari, M. and Horikawa, A. Numerical and experimental characterization of low NOx micromix combustion principle for industrial hydrogen gas turbine applications, In Turbo Expo: Power for Land, Sea, and Air, pp 10691079. American Society of Mechanical Engineers, 2012.10.1115/GT2012-69421CrossRefGoogle Scholar
Funke, H.H.-W., Beckmann, N., Keinz, J. and Horikawa, A. 30 Years of dry-low-NOx micromix combustor research for hydrogen-rich fuels—An overview of past and present activities, J. Eng. Gas Turbine Power, 2021, 143, p 071002.10.1115/1.4049764CrossRefGoogle Scholar
Ben Abdallah, R., Sethi, V., Gauthier, P.Q., Rolt, A.M. and Abbott, D. A detailed analytical study of hydrogen reaction in a novel micromix combustion system, In Turbo Expo: Power for Land, Sea, and Air, p V04BT04A028. American Society of Mechanical Engineers, 2018.10.1115/GT2018-76586CrossRefGoogle Scholar
Owusu, P.A. and Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent. Eng., 2016, 3, p 1167990.10.1080/23311916.2016.1167990CrossRefGoogle Scholar
Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W.: Cost-economic analysis of hydrogen for China’s fuel cell transportation field, Energies (Basel), 2020, 13, p 6522.10.3390/en13246522CrossRefGoogle Scholar
Kojima, H., Nagasawa, K., Todoroki, N., Ito, Y., Matsui, T. and Nakajima, R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production, Int. J. Hydrogen Energy, 2023, 48, pp 45724593.10.1016/j.ijhydene.2022.11.018CrossRefGoogle Scholar
Singh, P., Kumar, R., Sharma, S. and Kumar, S. Effect of engine parameters on the performance of dual-fuel CI engines with producer gas—A review, Energy Fuels, 2021, 35, pp 1637716402.10.1021/acs.energyfuels.1c02279CrossRefGoogle Scholar
Ajanovic, A., Sayer, M. and Haas, R. The economics and the environmental benignity of different colors of hydrogen, Int. J. Hydrogen Energy, 2022, 47, pp 2413624154.10.1016/j.ijhydene.2022.02.094CrossRefGoogle Scholar
Niaz, S., Manzoor, T. and Pandith, A.H. Hydrogen storage: Materials, methods and perspectives, Renew. Sustain. Energy Rev., 2015, 50, pp 457469.10.1016/j.rser.2015.05.011CrossRefGoogle Scholar
Muradov, N.Z. How to produce hydrogen from fossil fuels without CO2 emission, Int. J. Hydrogen Energy, 1993, 18, pp 211215.10.1016/0360-3199(93)90021-2CrossRefGoogle Scholar
Hassan, Q., Algburi, S., Sameen, A.Z. and Salman, H.M. Assessment of industrial-scale green hydrogen production using renewable energy, Proc. Inst. Mech. Eng. A J. Power Energy, 2024, 238, pp 569587.10.1177/09576509231219339CrossRefGoogle Scholar
Nandhini, R., Sivaprakash, B., Rajamohan, N. and Vo, D.-V.N. Carbon-free hydrogen and bioenergy production through integrated carbon capture and storage technology for achieving sustainable and circular economy–A review, Fuel, 2023, 342, p 126984.10.1016/j.fuel.2022.126984CrossRefGoogle Scholar
Warnatz, J., Maas, U., Dibble, R.W. and Warnatz, J. Combustion. Springer, 2006.Google Scholar
Ghali, P.F. and Khandelwal, B. Design and simulation of a hydrogen micromix combustor, In AIAA Scitech 2021 Forum, p 1984, 2021.10.2514/6.2021-1984CrossRefGoogle Scholar
Dahl, G. and Suttrop, F. Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines, Int. J. Hydrogen Energy, 1998, 23, pp 695704.10.1016/S0360-3199(97)00115-8CrossRefGoogle Scholar
Maher, L.E. Some problems arising from the use of hydrogen-fuelled propulsion systems, Aeronaut. J., 1964, 68, pp 765772.10.1017/S0368393100080895CrossRefGoogle Scholar
Funke, H.-W., Beckmann, N. and Abanteriba, S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications, Int. J. Hydrogen Energy, 2019, 44, pp 69786990.10.1016/j.ijhydene.2019.01.161CrossRefGoogle Scholar
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y.-G. and Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines, Prog. Aerosp. Sci., 2017, 94, pp 1245.10.1016/j.paerosci.2017.08.001CrossRefGoogle Scholar
Yang, X., Zhao, L., He, Z., Dong, S. and Tan, H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes, Appl. Therm. Eng., 2019, 160, p 114110.10.1016/j.applthermaleng.2019.114110CrossRefGoogle Scholar
Choi, J., Ahn, M., Kwak, S., Lee, J.G. and Yoon, Y. Flame structure and NOx emission characteristics in a single hydrogen combustor, Int. J. Hydrogen Energy, 2022, 47, pp 2954229553.10.1016/j.ijhydene.2022.06.247CrossRefGoogle Scholar
Fayaz, H., Saidur, R., Razali, N., Anuar, F.S., Saleman, A.R. and Islam, M.R. An overview of hydrogen as a vehicle fuel, Renew. Sustain. Energy Rev., 2012, 16, pp 55115528.10.1016/j.rser.2012.06.012CrossRefGoogle Scholar
Funke, H.H.-W., Börner, S., Robinson, A., Hendrick, P. and Recker, E. Low NOx H2 combustion for industrial gas turbines of various power ranges, 2010.Google Scholar
Schefer, R.W., White, C. and Keller, J. Lean hydrogen combustion, In Lean Combustion, pp 213VIII. Elsevier, 2008.10.1016/B978-012370619-5.50009-1CrossRefGoogle Scholar
Dennis, R., Long, H.A. III and Jesionowski, G. A literature review of NOx emissions in current and future state-of-the-art gas turbines, In Turbo Expo: Power for Land, Sea, and Air, vol. 86991, p V006T08A002, 2023.Google Scholar
Gupta, A., Ibrahim, M.S. and Amano, R.S. Effect of jet-to-mainstream momentum flux ratio on mixing process, Heat Mass Transfer, 2016, 52, pp 621634.10.1007/s00231-015-1582-7CrossRefGoogle Scholar
Kroniger, D., Horikawa, A., Funke, H.H.-W., Pfaeffle, F., Kishimoto, T. and Okada, K. Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion, In Turbo Expo: Power for Land, Sea, and Air. p V03AT04A025. American Society of Mechanical Engineers, 2021.10.1115/GT2021-58926CrossRefGoogle Scholar
Funke, H.H.-W., Beckmann, N., Stefan, L. and Keinz, J. Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “micromix” combustion principle, In Turbo Expo: Power for Land, Sea, and Air, p V001T01A022. American Society of Mechanical Engineers, 2023.10.1115/GT2023-102370CrossRefGoogle Scholar
Mohan, S. and Matalon, M. Diffusion flames and diffusion flame-streets in three dimensional micro-channels, Combust Flame, 2017, 177, pp 155170.10.1016/j.combustflame.2016.12.004CrossRefGoogle Scholar
Kim, J.S., Park, J., Kwon, O.B., Yun, J.H., Keel, S.I. and Kim, T.K. Preferential diffusion effects on NO formation in methane/hydrogen-air diffusion flames, Energy Fuels, 2008, 22, pp 278283.10.1021/ef700505aCrossRefGoogle Scholar
Hussain, M., Abdelhafez, A., Nemitallah, M.A., Araoye, A.A., Ben-Mansour, R. and Habib, M.A. A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines, Appl. Energy, 2020, 279, 115818.10.1016/j.apenergy.2020.115818CrossRefGoogle Scholar
Lacarelle, A., Moeck, J., Konle, H., Vey, S., Nayeri, C. and Paschereit, C. Effect of fuel/air mixing on NOx emissions and stability in a gas premixed combustion system, In 45th AIAA Aerospace Sciences Meeting and Exhibit, p 1417, 2007.10.2514/6.2007-1417CrossRefGoogle Scholar
Rashwan, S.S., Nemitallah, M.A. and Habib, M.A. Review on premixed combustion technology: stability, emission control, applications, and numerical case study, Energy Fuels, 2016, 30, pp 998110014.10.1021/acs.energyfuels.6b02386CrossRefGoogle Scholar
Nemitallah, M.A., Rashwan, S.S., Mansir, I.B., Abdelhafez, A.A. and Habib, M.A. Review of novel combustion techniques for clean power production in gas turbines, Energy Fuels, 2018, 32, pp 9791004.10.1021/acs.energyfuels.7b03607CrossRefGoogle Scholar
Chen, M., Zhang, L., Qiu, P., Zhu, J., Zhang, W., Chen, D., Sun, S. and Zhao, Y. Experimental study of syngas combustion on a novel swirl multi-nozzle micromix combustor, Int. J. Hydrogen Energy, 2024, 60, pp 13341344.10.1016/j.ijhydene.2024.02.235CrossRefGoogle Scholar
Quintino, F.M., Ribeiro, M. and Fernandes, E.C. Structure of CH4–air inverse diffusion flames in a multi-slit burner, Energy Fuels, 2021, 35, pp 72177231.10.1021/acs.energyfuels.0c03830CrossRefGoogle Scholar
Xu, T., Gao, X., Yang, J., Gan, Y., Yang, Z. and Zhang, Z. Experimental and numerical simulation study of the microscale laminar flow diffusion combustion of liquid ethanol, Ind. Eng. Chem. Res., 2013, 52, pp 80218027.10.1021/ie303171vCrossRefGoogle Scholar
Kalis, H., Marinaki, M., Strautins, U. and Barmina, I. Influence of electric field on thermo-chemical conversion of mixtures of straw pellets with coal, In Proc. of the 17-th Int. Conf. on Engineering for Rural Development (ERDev18), Jelgava, Latvia, pp 17461753, 2018.10.22616/ERDev2018.17.N299CrossRefGoogle Scholar
Agarwal, S., Kumar, M. and Shakher, C. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer, Opt. Lasers Eng., 2015, 68, pp 214221.10.1016/j.optlaseng.2015.01.004CrossRefGoogle Scholar
Zhang, T., Yu, G., Guo, Q. and Wang, F. Experimental study on the characteristics of impinging reaction region with OH* chemiluminescence in opposed impinging diffusion flames, Energy Fuels, 2013, 27, pp 70237030.10.1021/ef401204gCrossRefGoogle Scholar
Sen, U., Gangopadhyay, T., Bhattacharya, C., Mukhopadhyay, A. and Sen, S. Dynamic characterization of a ducted inverse diffusion flame using recurrence analysis, Combust. Sci. Technol., 2018, 190, pp 3256.10.1080/00102202.2017.1374952CrossRefGoogle Scholar
López-Juárez, M., Sun, X., Sethi, B., Gauthier, P. and Abbott, D. Characterising hydrogen micromix flames: combustion model calibration and evaluation, In Turbo Expo: Power for Land, Sea, and Air, p V003T03A008. American Society of Mechanical Engineers, 2020.10.1115/GT2020-14893CrossRefGoogle Scholar
Hamins, A., Kashiwagi, T. and Buch, R.R. Characteristics of pool fire burning, ASTM Spec. Tech. Publ., 1996, 1284, pp 1541.Google Scholar
Degroote, E. and Garcia-Ybarra, P.L. Flame spreading over liquid ethanol, Eur. Phys. J. B, 2000, 13, pp 381386.10.1007/s100510050045CrossRefGoogle Scholar
Quintiere, J.G. Fundamentals of fire phenomena, 2006.10.1002/0470091150CrossRefGoogle Scholar
Zanganeh, J., Moghtaderi, B. and Ishida, H. Combustion and flame spread on fuel-soaked porous solids, Prog. Energy Combust. Sci., 2013, 39, pp 320339.10.1016/j.pecs.2013.03.001CrossRefGoogle Scholar
Giannouloudis, A., Sun, X., Corsar, M., Booden, S.J., Singh, G., Abbott, D., Nalianda, D. and Sethi, B. On the development of an experimental rig for hydrogen micromix combustion testing, 2021.Google Scholar
Folcarelli, L., Ferrero, A., Masseni, F. and Pastrone, D. Numerical investigation of different configurations for hydrogen fuelled jet engine combustors. In AIAA SCITECH 2024 Forum, p 0964, 2024.10.2514/6.2024-0964CrossRefGoogle Scholar
Abdelhafez, A., Hussain, M., Nemitallah, M.A., Habib, M.A. and Ali, A. Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines, Energy, 2021, 228, p 120561.10.1016/j.energy.2021.120561CrossRefGoogle Scholar
Wang, H., Chen, X., Wang, C. and Liu, X. Numerical investigation into the pressure loss and air distribution uniformity of a hydrogen-rich Micromix combustor, Int. J. Hydrogen Energy, 2023, 48, pp 2637526393.10.1016/j.ijhydene.2023.03.272CrossRefGoogle Scholar
Schmidt, N., Müller, M., Preuster, P., Zigan, L., Wasserscheid, P. and Will, S. Development and characterization of a low-NOx partially premixed hydrogen burner using numerical simulation and flame diagnostics, Int. J. Hydrogen Energy, 48, pp 1570915721.10.1016/j.ijhydene.2023.01.012CrossRefGoogle Scholar
Chen, X., Wang, H., Wang, C., Wang, X., Wang, N. and Liu, X. Numerical investigation into fuel–air mixing characteristics and cold flow field of single hydrogen-rich Micromix nozzle, Fuel, 2023, 332, p 126181.10.1016/j.fuel.2022.126181CrossRefGoogle Scholar
Landry-Blais, A., Sivić, S. and Picard, M. Micro-mixing combustion for highly recuperated gas turbines: effects of inlet temperature and fuel composition on combustion stability and NOx emissions, J. Eng. Gas Turbine Power, 2022, 144, p 091014.10.1115/1.4055190CrossRefGoogle Scholar
Durocher, A., Fan, L., Füri, M., Bourque, G., Sirois, J., May, D., Bergthorson, J.M., Yun, S. and Vena, P. Characterization of a 5-nozzle array using premix/micromix injection for hydrogen, Appl. Energy Combust. Sci., 2024, 18, p 100260.Google Scholar
Araoye, A.A., Abdelhafez, A., Ben-Mansour, R., Nemitallah, M.A. and Habib, M.A. On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study, Chem. Eng. Process.-Process. Intensificat., 2021, 162, p 108336.10.1016/j.cep.2021.108336CrossRefGoogle Scholar
Tekin, N., Ashikaga, M., Horikawa, A. and Funke, H. Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems, Gas Energy, 2018, 2, pp 16.Google Scholar
Liu, Z., Xiong, Y., Zhang, Z., Ren, L., Liu, Y. and Lu, Y. Investigation of a novel combustion stabilization mechanism and combustion characteristics of a multi-nozzle array model combustor, Fuel, 2022, 327, p 125138.10.1016/j.fuel.2022.125138CrossRefGoogle Scholar
Berger, J. Scaling of an aviation hydrogen micromix injector design for industrial GT combustion applications, Aerotecn. Missili Spazio, 2021, 100, pp 239251.10.1007/s42496-021-00091-5CrossRefGoogle Scholar
Sun, X., Agarwal, P., Carbonara, F., Abbott, D., Gauthier, P. and Sethi, B. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics, In Turbo Expo: Power for Land, Sea, and Air, p V003T03A015. American Society of Mechanical Engineers, 2020.10.1115/1.0002512VCrossRefGoogle Scholar
Funke, H.H.W., Beckmann, N., Keinz, J. and Abanteriba, S. Comparison of numerical combustion models for hydrogen and hydrogen-rich syngas applied for dry-low-nox-micromix-combustion, J. Eng. Gas Turbine Power, 140, p 081504, 2018.10.1115/1.4038882CrossRefGoogle Scholar
Trilla, J., Grossen, J., Robinson, A., Funke, H.H.-W., Bosschaerts, W. and Hendrick, P. Development of a hydrogen combustion chamber for an ultra micro gas turbine, In PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9–12, 2008, pp 101104.Google Scholar
Funke, H.-W., Dickhoff, J., Keinz, J., Ayed, A.H., Parente, A. and Hendrick, P. Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications, Energy Proc., 2014, 61, pp 17361739.10.1016/j.egypro.2014.12.201CrossRefGoogle Scholar
Ayed, A.H., Kusterer, K., Funke, H.-W., Keinz, J., Striegan, C. and Bohn, D. Improvement study for the dry-low-NOx hydrogen micromix combustion technology. Propul. Power Res., 2015, 4, pp 132140.10.1016/j.jppr.2015.07.003CrossRefGoogle Scholar
Treleaven, N.C.W., Puggelli, S., Mercier, R., Leparoux, J., Sun, X. and Sethi, B. High altitude relight performance of hydrogen-air micromix combustion systems, In Turbo Expo: Power for Land, Sea, and Air, p V03BT04A063. American Society of Mechanical Engineers, 2023.10.1115/GT2023-103970CrossRefGoogle Scholar
Kroniger, D., Kamiya, H. and Horikawa, A. Investigation of combustion oscillation modes of hydrogen micromix flames, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A050. American Society of Mechanical Engineers, 2023.10.1115/GT2023-102068CrossRefGoogle Scholar
Xuechao, H.U., Xiaotian, B.I., Ce, L.I.U. and Weiwei, S. Study of combustion characteristics and flame stabilization mechanism of hydrogen-containing micromix jet flames, J. Tsinghua Univ. (Sci. Technol.), 2023, 63, pp 572584.Google Scholar
Lopez-Ruiz, G., Alava, I. and Blanco, J.M. Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems, Energy, 2023, 270, p 126882.10.1016/j.energy.2023.126882CrossRefGoogle Scholar
Funke, H.-W., Beckmann, N. and Abanteriba, S. Development and testing of a fuelflex dry-low-NOx micromix combustor for industrial gas turbine applications with variable hydrogen methane mixtures, In Turbo Expo: Power for Land, Sea, and Air, p V04AT04A002. American Society of Mechanical Engineers, 2019.10.1115/GT2019-90095CrossRefGoogle Scholar
Shahin, T.T., Gejji, R., Hodge, A.J., McLean, T.N., Lucht, R.P. and Slabaugh, C.D. Influence of natural gas addition on combustion instabilities on a lean-premixed hydrogen flame. In AIAA SCITECH 2024 Forum, p 0392, 2024.10.2514/6.2024-0392CrossRefGoogle Scholar
Tran, B., Gomez Escudero, I. and McDonell, V. Emissions and flame structure assessment of aeroengine micromixing injectors for lean direct injection of hydrogen and hydrogen/natural gas blends. In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A075. American Society of Mechanical Engineers, 2023.10.1115/GT2023-102632CrossRefGoogle Scholar
Gomez Escudero, I., Tran, B., Overbaugh, M., McDonell, V., Williams, B., Buelow, P., Ryon, J. and DeBeni, O. Adaptation of aeroengine micromixing injectors for lean direct injection of hydrogen and hydrogen/natural gas blends, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A035. American Society of Mechanical Engineers, 2023.10.1115/GT2023-101577CrossRefGoogle Scholar
Bastiaans, R.J.M. and Devriese, C. Dilution hole design for 100% hydrogen-powered gas turbine, 2022.Google Scholar
Ayed, A.H., Kusterer, K., Funke, H.H.-W. and Keinz, J. CFD based improvement of the DLN hydrogen micromix combustion technology at increased energy densities. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS), 2016, 26, pp 290303.Google Scholar
Ayed, A.H., Kusterer, K., Funke, H.-W., Keinz, J. and Bohn, D. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities, Propul. Power Res., 2017, 6, pp 1524.10.1016/j.jppr.2017.01.005CrossRefGoogle Scholar
Boerner, S., Funke, H.-W., Hendrick, P., Recker, E. and Elsing, R. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine, Progr. Propul. Phys., 2013, 4, pp 357372.10.1051/eucass/201304357CrossRefGoogle Scholar
Horikawa, A., Okada, K., Yamaguchi, M., Aoki, S., Wirsum, M., Funke, H.H.-W. and Kusterer, K. Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine, In Turbo Expo: Power for Land, Sea, and Air, p V03BT04A014. American Society of Mechanical Engineers, 2021.10.1115/GT2021-59666CrossRefGoogle Scholar
Senouci, M., Larbi, A., Rouan, S., Bounif, A. and Merouane, H. Investigation of modified EMST micromixing model performance on Lagrangian PDF transported in lifted Hydrogen/Air fames, CFD Lett., 2024, 16, pp 2031.10.37934/cfdl.16.6.2031CrossRefGoogle Scholar
Chen, M., Zhang, L., Xing, C., Bao, Y., Qiu, P., Zhang, W., Sun, S. and Zhao, Y. Effect of mixing on combustion characteristics of swirl/non-swirl micromix flames, Non-Swirl Micromix Flames.Google Scholar
Lu, C., Zhang, L., Jiang, X., Xing, C., Liu, L. and Qiu, P. The flame structure and combustion dynamics in a steam diluted H2/Air micromix flame, Fuel, 357, p 129903, 2024.10.1016/j.fuel.2023.129903CrossRefGoogle Scholar
Lu, C., Jiang, X., Zhang, L., Xing, C., Liu, L. and Qiu, P. The turbulent flame structure in a steam diluted H2/Air micromix flame, Int. J. Hydrogen Energy, 2023, 48, pp 3849638507.10.1016/j.ijhydene.2023.06.101CrossRefGoogle Scholar
Lu, C., Zhang, L., Xing, C., Liu, L. and Qiu, P. Effects of characteristic diameter, steam dilution, and equivalence ratio on NO formation for a H2/Air micromix design, Int. J. Hydrogen Energy, 61, 2024, pp 11331141.10.1016/j.ijhydene.2024.02.373CrossRefGoogle Scholar
Miller, J.A. and Bowman, C.T. Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci., 1989, 15, pp 287338.10.1016/0360-1285(89)90017-8CrossRefGoogle Scholar
Kirkpatrick, A.T. and Kuo, K.K. Principles of Combustion. John Wiley & Sons, 2024.Google Scholar
Ströhle, J. and Myhrvold, T. An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions, Int. J. Hydrogen Energy, 2007, 32, pp 125135.10.1016/j.ijhydene.2006.04.005CrossRefGoogle Scholar
Konnov, A.A., Colson, G. and De Ruyck, J. NO formation rates for hydrogen combustion in stirred reactors, Fuel, 2001, 80, pp 4965.10.1016/S0016-2361(00)00060-0CrossRefGoogle Scholar
Zeldvich, Y.B. The oxidation of nitrogen in combustion and explosions, J. Acta Physicochimica, 1946, 21, p 577.Google Scholar
Warnatz, J., Maas, U. and Dibble, R.W. Formation of nitric oxides. In Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2006. https://doi.org/10.1007/978-3-540-45363-5_17 CrossRefGoogle Scholar
Skottene, M. and Rian, K.E. A study of NOx formation in hydrogen flames, Int. J. Hydrogen Energy, 2007, 32, pp 35723585.10.1016/j.ijhydene.2007.02.038CrossRefGoogle Scholar
Bozzelli, J.W. and Dean, A.M. O+ NNH: A possible new route for NOx formation in flames, Int. J. Chem. Kinet., 1995, 27, pp 10971109.10.1002/kin.550271107CrossRefGoogle Scholar
Haworth, N.L., Mackie, J.C. and Bacskay, G.B. An ab initio quantum chemical and kinetic study of the NNH+ O reaction potential energy surface: How important is this route to NO in combustion? J. Phys. Chem. A., 2003, 107, 67926803.10.1021/jp034421pCrossRefGoogle Scholar
Konnov, A.A. and De Ruyck, J. Temperature-dependent rate constant for the reaction NNH+ O→ NH+ NO, Combust. Flame., 2001, 125, pp 12581264.10.1016/S0010-2180(01)00250-4CrossRefGoogle Scholar
Konnov, A.A. On the relative importance of different routes forming NO in hydrogen flames, Combust. Flame., 2003, 134, pp 421424.10.1016/S0010-2180(03)00135-4CrossRefGoogle Scholar
Saravanamuttoo, H.I.H., Cohen, H. and Rogers, G.F.C. Shaft power cycles. In Gas Turbine Theory. England: Pearson Education Limited, pp 5657, 2001.Google Scholar
Giovannoni, V., Sharma, R.N. and Raine, R.R. Thermal performances of a small-scale regenerative combustion chamber for ultra-micro gas turbine, Combust. Sci. Technol., 2017, 189, pp. 18591877.10.1080/00102202.2017.1333986CrossRefGoogle Scholar
Price, J., Kimmel, J., Chen, X., Bhattacharya, A., Fahme, A. and Otsuka, J. Advanced materials for MercuryTM 50 gas turbine combustion system, In Turbo Expo: Power for Land, Sea, and Air, pp 261267, 2006.10.1115/GT2006-90568CrossRefGoogle Scholar
Freitag, P., Stolle, D., Kullmann, F., Linssen, J. and Stolten, D. A techno-economic analysis of future hydrogen reconversion technologies, Int. J. Hydrogen Energy, 2024, 77, pp 12541267.10.1016/j.ijhydene.2024.06.164CrossRefGoogle Scholar
Almailea, D. Ride through Capability of medium-sized Gas Turbine Generators: Modelling and Simulation of Low Voltage Ride through Capability of Siemens Energy’s medium-sized GTG and Low Voltage Ride through Grid Codes requirements at point of connection (2023).Google Scholar
Cho, E.-S., Jeong, H., Hwang, J. and Kim, M. A novel 100% hydrogen gas turbine combustor development for industrial use, In Turbo Expo: Power for Land, Sea, and Air, p V03AT04A020. American Society of Mechanical Engineers, 2022.10.1115/GT2022-80619CrossRefGoogle Scholar
Dennis, R., Long, H.A. and Jesionowski, G. A literature review of NOx emissions in current and future state-of-the-art gas turbines, J. Eng. Gas Turbine Power, 146, 2024.10.1115/1.4063836CrossRefGoogle Scholar
Langston, L.S. Hydrogen fueled gas turbines, Mech. Eng., 2019, 141, pp 5254. 10.1115/1.2019-MAR-6CrossRefGoogle Scholar
Funke, H.-W., Boerner, S., Keinz, J., Kusterer, K., Haj Ayed, A., Tekin, N., Kazari, M., Kitajima, J., Horikawa, A. and Okada, K. Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications, In Turbo Expo: Power for Land, Sea, and Air, p V01AT04A055. American Society of Mechanical Engineers, 2013.10.1115/GT2013-94771CrossRefGoogle Scholar
Haque, M.A., Nemitallah, M.A., Abdelhafez, A., Mansir, I.B. and Habib, M.A. Review of fuel/oxidizer-flexible combustion in gas turbines, Energy & Fuels, 2020, 34, pp 1045910485.10.1021/acs.energyfuels.0c02097CrossRefGoogle Scholar
York, W.D., Ziminsky, W.S. and Yilmaz, E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines, J. Eng. Gas Turbine Power, 2013, 135, 022001.10.1115/1.4007733CrossRefGoogle Scholar
Cecere, D., Giacomazzi, E., Di Nardo, A. and Calchetti, G. Gas turbine combustion technologies for hydrogen blends, Energies (Basel), 2023, 16, p 6829.10.3390/en16196829CrossRefGoogle Scholar
Bothien, M.R., Ciani, A., Wood, J.P. and Fruechtel, G. Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen, J. Eng. Gas Turbine Power, 2019, 141, p 121013.10.1115/1.4045256CrossRefGoogle Scholar