Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:01:36.868Z Has data issue: false hasContentIssue false

Rotorcraft-pilot coupling analysis through state-space aerodynamic modelling

Published online by Cambridge University Press:  27 January 2016

J. Serafini*
Affiliation:
Roma Tre University, Department of Engineering, Rome, Italy
L. Greco
Affiliation:
CNR-INSEAN, Marine Technology Research Institute, Rome, Italy
M. Gennaretti
Affiliation:
Department of Engineering, Roma Tre University, Rome, Italy

Abstract

The terminology ‘rotorcraft-pilot coupling’ denotes phenomena arising from interaction between pilot and rotorcraft. Among these, the present work deals with ‘pilot-assisted oscillations’ that derive from unintentional pilot actions on controls due to seat vibrations, and are strictly related to rotor-aeroelasticity/airframe-structural-dynamics coupling, with involvement of blade control actuator dynamics. Focusing the attention on helicopters, a comprehensive rotorcraft model is developed and applied, with main rotor unsteady aerodynamics described in state-space form. This makes it particularly suited for stability and frequency-response analysis, as well as control applications. Numerical investigations address two critical rotorcraft-pilot coupling aeroelastic issues: stability of vertical bouncing and gust response in hovering. Results from main rotor unsteady aerodynamics modelling are compared with widely-used quasi-steady aerodynamics predictions. These suggest that, for accurate RPC/PAO phenomena predictions, mathematical modelling should include the three-dimensional, unsteady-flow effects, and that the pilot-in-the-loop passive behaviour produces a beneficial effect on the load factor generated by gust encountering.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Strelow, H. Pilot activated oscillations rotorcraft pilot coupling. Technical Report Helicopter Exploratory Group EG-22, GARTEUR EG report, April 2004.Google Scholar
2.Pavel, D.M., Jump, M., Dang-Vu, B., Masarati, P., Gennaretti, M., Ionita, A., Zaichik, L. and Smaili, H., Quaranta, G., Yilmaz, D., Jones, M., Serafini, J. and Malecki, J.Adverse rotorcraft pilot couplings-past, present and future challenges, Progress in Aerospace Sciences, 2013, 62, pp 151.Google Scholar
3.Pavel, M.D., Yilmaz, D., Dang Vu, B., Jump, M., Jones, M. and Lu, L.Adverse rotorcraft-pilot couplings – modelling and prediction of rigid body rpc – sketches from the work of European project Aristotel. In Proceedings of 39th European Rotorcraft Forum, Moscow, Russia, September 2013.Google Scholar
4.Gennaretti, M., Molica Colella, M., Serafini, J., Dang-Vu, B., Masarati, P., Quaranta, G., Muscarello, V., Jump, M., Jones, M., Lu, L., Ionita, A., Fuiorea, I., Mihaila-Andres, M. and Stefan, R.Anatomy, modelling and prediction of aeroservoelastic rotorcraft pilot-coupling. In Proceedings of 39th European Rotorcraft Forum, Moscow, Russia, September 2013.Google Scholar
5Dieterich, O., Götz, J., Dang-Vu, B., Haverdings, H., Masarati, P., Pavel, M., Jump, M. and Gennaretti, M.Adverse rotorcraft-pilot coupling: Recent research activities in Europe. In Proceedings of the 34th European Rotorcraft Forum, Liverpool, Uk, September 2008.Google Scholar
6.Gennaretti, M., Masarati, P., Quaranta, G. and Serafini, J.Numerical investigation of aeroservoelastic rotorcraft-pilot coupling. In Proceedings of XIX Congresso Nazionale AIDAA, Forlí, Italy, September 2007.Google Scholar
7Serafini, J., Gennaretti, M., Masarati, P., Quaranta, G. and Dieterich, O.Aeroelastic and biodynamic modeling for stability analysis of rotorcraft-pilot coupling phenomena. In Proceedings of 34th European Rotorcraft Forum, Liverpool, UK, September 2008.Google Scholar
8.Masarati, P., Quaranta, G., Gennaretti, M. and Serafini, J.Aeroelastic investigation of rotorcraft-pilot coupling)rpc) by coupled BEM/multibody analysis. In Proceedings of 37th European Rotorcraft Forum, Gallarate, Italy, September 2011.Google Scholar
9.Serafini, J., Molica Colella, M. and Gennaretti, M.A finite-state aeroelastic model for rotorcraft pilot-assisted-oscillations analysis. In Proceedings of 38th European Rotorcraft Forum, Amsterdam, The Netherlands, September 2012.Google Scholar
10.Gennaretti, M., Serafini, J.Masarati, P. and Quaranta, G.Effects of biodynamic feedthrough in rotorcraft/pilot coupling: collective bounce case, J Guidance Control and Dynamics, 2013, 36, (6), pp 17091721.Google Scholar
11.Masarati, M., Quaranta, G. and Jump, M.Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft-pilot couplings analysis. Proceedings of the Institution of Mechanical Engineers, Part G: J Aerospace Engineering, 2013, 227, (1), pp 124140.Google Scholar
12.Masarati, M., G. Quaranta, G., Lu, L. and Jump, M.A closed loop collective bounce adverse aeroelastic rotorcraft-pilot coupling experiment, J Sound and Vibration, 2014, 333, (1), pp 307325.Google Scholar
13.Serafini, J., Molica Colella, M. and Gennaretti, M.A finite-state aeroelastic model for rotorcraft-pilot coupling analysis, CEAS Aeronaut J, 2014, 5, (1), pp 111.CrossRefGoogle Scholar
14.Gennaretti, M. and Greco, L.A time-dependent coeffcient reduced-order model for unsteady aerodynamics of proprotors, J Aircr, 2005, 42, (1), pp 138147.Google Scholar
15.Gennaretti, M. and Greco, L.Whirl flutter analysis of prop-rotors using unsteady aerodynamics reduced-order models, Aeronaut J, 2008, 112, (1131), p 233242.Google Scholar
16.Karpel, M.Design for the active flutter suppression and gust alleviation using state-space aeroelastic modeling, J Aircr, 1982, 19, (3), pp 221227.Google Scholar
17.Vepa, R. On the use of Padé approximants to represent unsteady aerodynamic loads for arbitrarily small motions of wings. (AIAA Paper 76-17), January 1976.Google Scholar
18.Roger, K.L. Airplane math modeling methods for active control design. Technical Report AGARD-CP-228, AGARD, August 1977.Google Scholar
19.Edwards, J.W., Ashley, H. and Breakwell, J.V.Unsteady aerodynamic modeling for arbitrary motions. AIAA J, 1979, 17, (4), pp 365374.CrossRefGoogle Scholar
20.Mayo, J.R.The involuntary participation of a human pilot in a helicopter collective control loop. In Proceedings of 15th European Rotorcraft Forum, Amsterdam, The Netherlands, September 1989.Google Scholar
21.Hodges, D.H. and Dowell, E.H. Nonlinear equation for the elastic bending and torsion of twisted nonuniform rotor blades. NASA Technical Note TN D-7818, NASA, 1974.Google Scholar
22.Gennaretti, M. and Bernardini, G.Aeroelastic response of helicopter rotors using a 3D unsteady aerodynamic solver, Aeronaut J, 2006, 110, (1114), pp 793801.Google Scholar
23.Bernardini, G., Serafini, J., Molica Colella, M. and Gennaretti, M.Analysis of a structural-aerodynamic fully-coupled formulation for aeroelastic response of rotorcraft, Aerospace Science and Technology, 2013, 29, (1), pp 175184.Google Scholar
24.Hodges, D.H. and Ormiston, R.A. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling. NASA Technical Note TN D-8192, NASA, 1976.Google Scholar
25.Theodorsen, T.General theory of aerodynamic instability and the mechanism of flutter. NACA Report 496, NACA, 1935, 24Google Scholar
26.Loewy, R.G.A two-dimensional approximation of unsteady aerodynamics of rotary wings, J Aeronautical Sciences, 1957, 24, (2), pp 8193.Google Scholar
27.Gennaretti, M. and Ponzi, C.Finite-state aerodynamic modelling for gust load alleviation of wing-tail configurations, Aeronaut J, 1999, 103, (1021), pp 147158.Google Scholar
28.Gennaretti, M.corbelli, A. and Mastroddi, F.A comparison among some aeroelastic models for the stability analysis of a flap-lag-torsion helicopter rotor in hover. In Proceedings of 26th European Rotorcraft Forum, The Hague, The Netherlands, September 2000.Google Scholar
29.Morino, L., Mastroddi, F., De Troia, R., Ghiringhelli, G.L. and Mantegazza, P.Matrix fraction approach for fnite-state aerodynamic modeling. AIAA J, 1995, 180, 33, (4), pp 703, 711.Google Scholar
30.Padfeld, G.D.Helicopter Flight Dynamics, Blackwell Science Ltd, Oxford, 2 ed, 2007.Google Scholar
31.Venrooij, J.Mulder, M.Abbink, D.A.van Paassen, M.M., Mulder, M.F.C.T.van der Helm, and H.H Bultho. Mathematical biodynamic feedthrough model applied to rotorcraft. IEEE Transactions on Cybernetics, 2013, 44, (7), pp 11251138.Google Scholar
32.Venrooij, J., Abbink, D.A., Mulder, M., van Paassen, M.M., Mulder, M., van der Helm, F.C.T. and Bulthoff, H.H.A biodynamic feedthrough model based on neuromuscular principles, IEEE Transactions on Cybernetics, 2013, 44, (7), pp 11411154.Google Scholar
33.Masarati, P., Quaranta, G. and Zanoni, A.Dependence of helicopter pilots biodynamic feedthrough on upper limbs muscular activation patterns, Proceedings of the Institution of Mechanical Engineers, Part K: J Multi-body Dynamics, 2013, 227, (4), pp 344.Google Scholar
34.Morino, L. and Gennaretti, M.Computational Nonlinear Mechanics in Aerospace Engineering, volume 146 of Aeronautics & Astronautics AIAA Series, chapter Boundary integral equation methods for aerodynamics, pp 279320. S.N. Atluri, 1992.Google Scholar
35.Zaichik, L., Yashin, Y., Desyatnik, P., Masarati, P., Quaranta, G., Pavel, M.D.VenrooiJ, J. and Smaili, H.Biodynamic pilot modelling for aeroelastic a/rpc. In Proceedings of 39th European Rotorcraft Forum, Moscow, Russia, September 2013.Google Scholar
36.Quaranta, G., Masarati, P. and Venrooij, J.Impact of pilots’ biodynamic feedthrough on rotorcraft by robust stability, J Sound and Vibration, 2013, 332, (20), pp 49484962.Google Scholar
37.Quaranta, G.Tamer, A.Muscarello, V.Masarati, P.Gennaretti, M.Serafini, J. and Molica Colella, M.A finite-state aeroelastic model for rotorcraft-pilot coupling analysis, CEAS Aeronaut J, 2014, 5, (1), pp 2939.Google Scholar
38.Muro, D., Molica Colella, M., Serafini, J. and Gennaretti, M.An optimal control approach for alleviation of tiltrotor gust response, Aeronaut J, 2012, 116, (1180), pp 651666.Google Scholar