Published online by Cambridge University Press: 27 March 2017
In this work, trajectory optimisation has been performed for a wing-body rocket assisted vehicle to compute the bestset of performance parameters including burn-out angle, angle-of-attack, bank-angle and throttle command that would result in optimal down-range and cross-range performance of the re-entry vehicle. An hp-adaptive Pseudospectral method has been used for the optimisation by combining the launch and rocket rocket-assisted re-entry stages. The purpose of the research is to compute optimal burn-out condition, angle-of-attack, bank-angle and optimal thrust segments that would maximise the down-range and cross-range performance of the hypersonic boost glide vehicle, under constrained heat rate environments. The variation of down-range/cross-range performance of rocket rocket-assisted hypersonic boost glide vehicle with bounds on diminishing heat rate has also been computed.