Published online by Cambridge University Press: 07 June 2016
A unified theory is given of hypersonic and supersonic flow over the lower surface of a caret wing at certain off-design conditions when the bow shock is attached to the leading edges of the wing and when there exists no internal shock. The flow field on the lower surface of a caret wing consists of uniform flow regions near the leading edges, where the cross-flow is supersonic, and a non-uniform flow in the central region, where the cross-flow is subsonic. The basic assumption is that the flow in the central region differs slightly from the two-dimensional supersonic flow over a flat plate at the same angle of incidence as that of the lower ridge of the wing. Based on this assumption, a first-order perturbation flow is first calculated and then strained and corrected so that it matches the uniform flow which is obtained exactly. Slope discontinuities of the pressure curve are found at the cross-flow sonic line. Numerical examples and comparisons with previous theories and experiments are included.