No CrossRef data available.
Published online by Cambridge University Press: 07 June 2016
Applications of “integral transforms of in-plane coordinate variables” in order to formulate unsteady planar lifting surface theories are demonstrated for both sub- and supersonic inviscid flows. It is concise and pithy. Fourier transforms are exclusively used, except for only Laplace transform in the supersonic streamwise direction. It is found that the streamwise Fourier inversion in the subsonic case requires some caution. Concepts based on the theory of distributions seem to be essential, in order to solve the convergence difficulties of integrals. Apart from this caution, the method of integral transforms of in-plane coordinate variables makes it be pure-mathematical to formulate the lifting surface problems, and makes aerodynamicist’s experiences and physical models such as vortices or doublets be useless.