Published online by Cambridge University Press: 07 June 2016
The stress distribution in rotating circular discs containing a central hole and a symmetrical array of non-central holes is determined by numerical solution of the equations of generalised plane stress. Particular attention is given to an annulus containing the holes and of width approximately eight hole diameters, in which the full two-dimensional equations are solved. The region outside this annulus is treated as radially symmetric and the stresses there are determined from a simpler one-dimensional model. Stress distributions are reported for uniform discs of fixed geometry containing 10, 20 and 45 holes. Results are also obtained for 20-hole discs of non-uniform thickness comprising a uniformly tapered disc, a disc with a thickened annulus containing the holes, and a uniform disc with each hole surrounded by thickened bosses. As a check on the numerical method, calculations have been carried out on a disc of identical geometry to one examined photoelastically bv Leist and Weber with good agreement. The effect of changing Poisson's ratio for this particular disc is also examined.