Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:27:16.210Z Has data issue: false hasContentIssue false

Learning in design: From characterizing dimensions to working systems

Published online by Cambridge University Press:  01 April 1998

YORAM REICH
Affiliation:
Department of Solid Mechanics, Materials, and Structures, Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel

Abstract

The application of machine learning (ML) to solve practical problems is complex. Only recently, due to the increased promise of ML in solving real problems and the experienced difficulty of their use, has this issue started to attract attention. This difficulty arises from the complexity of learning problems and the large variety of available techniques. In order to understand this complexity and begin to overcome it, it is important to construct a characterization of learning situations. Building on previous work that dealt with the practical use of ML, a set of dimensions is developed, contrasted with another recent proposal, and illustrated with a project on the development of a decision-support system for marine propeller design. The general research opportunities that emerge from the development of the dimensions are discussed. Leading toward working systems, a simple model is presented for setting priorities in research and in selecting learning tasks within large projects. Central to the development of the concepts discussed in this paper is their use in future projects and the recording of their successes, limitations, and failures.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)