Article contents
Machining scheme selection based on a new discrete particle swarm optimization and analytic hierarchy process
Published online by Cambridge University Press: 20 January 2014
Abstract
The goal of machining scheme selection (MSS) is to select the most appropriate machining scheme for a previously designed part, for which the decision maker must take several aspects into consideration. Because many of these aspects may be conflicting, such as time, cost, quality, profit, resource utilization, and so on, the problem is rendered as a multiobjective one. Consequently, we consider a multiobjective optimization problem of MSS in this study, where production profit and machining quality are to be maximized while production cost and production time must be minimized, simultaneously. This paper presents a new discrete method for particle swarm optimization, which can be widely applied in MSS to find out the set of Pareto-optimal solutions for multiobjective optimization. To deal with multiple objectives and enable the decision maker to make decisions according to different demands on each evaluation index, an analytic hierarchy process is implemented to determine the weight value of evaluation indices. Case study is included to demonstrate the feasibility and robustness of the hybrid algorithm. It is shown from the case study that the multiobjective optimization model can simply, effectively, and objectively select the optimal machining scheme according to the different demands on evaluation indices.
Keywords
- Type
- Regular Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2014
References
REFERENCES
- 11
- Cited by