Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T02:26:06.793Z Has data issue: false hasContentIssue false

Estimation of the Radiocarbon Reservoir Effect, Snake River Basin, Northwestern North America

Published online by Cambridge University Press:  20 January 2017

W. R. Osterkamp
Affiliation:
1502 E. Magee Road, Tucson, AZ 85718 (wroster@usgs.gov)
Thomas J. Green
Affiliation:
Arkansas Archeological Survey, 2475 N. Hatch Ave., Fayetteville, AR 72704 (tgreen@uark.edu)
Kenneth C. Reid
Affiliation:
State Historic Preservation Office, 210 Main StreetBoise, ID 83702 (Ken.Reid@ishs.idaho.gov)
Alexander E. Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, 120 Riverbend Road, Athens, GA 30602 (acherkin@uga.edu)

Abstract

Many archaeological sites along coastlines and rivers contain large quantities of marine and riverine bivalve shell. Often shell is the only datable organic material available to determine radiocarbon age estimates of features and to build regional chronologies. Shell is difficult to date accurately because of reservoir effects, and archaeologists have avoided it despite its abundance. If reservoir effects are understood, shell can provide accurate radiocarbon age estimates. This report provides an example using regression relations computed from radiocarbon assays of paired shelll charcoal samples from archaeological sites along the middle and lower Snake River, Northwestern North America.

Muchos sitios arqueologicos a lo largo de la costa y de los ríos muestran grandes cantidades de conchas de bivalvos marinos y fluviales. Con frecuencia, la concha puede ser la única materia orgánica disponible para la datación con radiocarbono de un sitio, y para construir cronologías regionales. Desgraciadamente, debido a los efectos de reserva,puede ser difícil determinar la edad de los conchos bivalvos con precisión, y los arqueólogos han evitado el uso de las conchas a pesar de su abundancia. Sin embargo, si los efectos de reserve son tenidos en cuenta y comprendidos adecuadamente, las conchas pueden proporcionar fechas precisas de radiocarbono. Este artículo muestra un ejemplo del uso de las relaciones de regresión calculadas a partir de dataciones dobles paralelas de carbón y conchas recogidos en sitos arqueológicos a lo largo de la parte central y la parte baja del Snake River, noroeste de Norte América.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ames, Kenneth M., Dumond, Don E., Galm, Jerry R., and Minor, Rick 1998 Prehistory of the Southern Plateau. In Plateau, edited by Deward E. Walker, pp. 10319. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution, Washington, D.C. Google Scholar
Beck, Charlotte, and Jones, George T. 2013 Complexities of the Colonization Process: A View from the North American West. In Paleoamerican Odyssey, edited by Kelly E. Graf, Caroline V. Ketrone, and Michael E. Waters, pp. 273291. Center for the Study of the First Americans, Texas A & M University, College Station.Google Scholar
Beiswenger, Jane M. 1991 Late Quaternary Vegetational History of Grays Lake, Idaho. Ecological Monographs 61:165182.Google Scholar
Bense, Judith Ann 1972 The Cascade Phase: A Study in the Effect of the Altithermal on a Cultural System. Ph.D. dissertation, Department of Anthropology, Washington State University, Pullman.Google Scholar
Benson, Larry V., Kashgarian, Michaele, Rye, Robert, Lund, Steve P., Paillet, Fred, Smoot, Joseph P., Kester, Cynthia, Mensing, Scott, Meko, Dave, and Lindstrom, Susan 2002 Holocene Multidecadal and Multicentennial Droughts Affecting Northern California and Nevada. Quaternary Science Reviews 21:659682.Google Scholar
Chatters, James C., and Hoover, Karin A. 1992 Response of the Columbia River Fluvial System to Holocene Climatic Change. Quaternary Research 37:4259.Google Scholar
Chatters, Roy C. 1968 Washington State University Natural Radiocarbon Measurements I. Radiocarbon 10:479498.Google Scholar
Cherkinsky, Alexander, Pluckhahan, Thomas J., and Thompson, Victor D. 2014 Variation in Radiocarbon Age Determinations from the Crystal River Archaeological Site, Florida. Radiocarbon, in press.Google Scholar
Culleton, Brendan J. 2006 Implications of a Freshwater Radiocarbon Reservoir Correction of the Time of Late Holocene Settlement of the Elk Hills, Kern County, California. Journal of Archaeological Science 33:13311339.Google Scholar
Davis, Loren G., and Muehlenbachs, Karlis 2001 A Late Pleistocene to Early Holocene Record of Precipitation Reflected in Margaridfera falcata Shell d18O from Three Archaeological Sites in the Lower Salmon River Canyon, Idaho. Journal of Archaeological Science 28:291303.Google Scholar
Davis, Loren G., and Schweger, Charles E. 2004 Geoarchaeological Context of Late Pleistocene and Early Holocene Occupation at the Cooper's Ferry Site, Western Idaho, USA. Geoarchaeology 19:685704.Google Scholar
Deo, Jennie N., Stone, John O., and Stein, Julie K. 2004 Building Confidence in Shell: Variations in the Marine Radiocarbon Reservoir Correction for the Northwest Coast over the Past 3,000 Years. American Antiquity 69:771786.Google Scholar
Erlandson, Jon M., Kennett, Douglas J., Lynn Ingram, B., Guthrie, Daniel A., Morris, Don P., Tveskov, Mark A., James West, G., and Walker, Phillip L. 1996 An Archaeological and Paleontological Chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38:35573.Google Scholar
Goebel, Ted, and Keene, Joshua L. 2014 Are Great Basin Stemmed Points as Old as Clovis in the Intermountain West? A Review of the Geochronological Evidence. In Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler, edited by Nancy J. Parezo and Joel C. Janetski, pp. 3560, University of Utah Press, Salt Lake City.Google Scholar
Green, Thomas J. 1982 House Form and Variability at Givens Hot Springs, Southwest Idaho. Idaho Archaeologist 6:3344.Google Scholar
Gruhn, Ruth 1964 Test Excavations at Sites 10OE128 and 10OE129 Southwest Idaho. Tebiwa 7(2):2836.Google Scholar
Hackenberger, Steven, and Thompson, R.W. 1995 Archaeological Investigations, Tryon Creek Site (35WA288), Hells Canyon National Recreation Area (PA 6-92-16-118), Wallowa County, Oregon. Manuscript on file with U.S. Forest Service, Enterprise, Oregon.Google Scholar
Hammatt, Hallett H. 1977 Late Quaternary Stratigraphy and Archaeological Chronology in the Lower Granite Reservoir Area, Lower Snake River, Washington. Ph.D. dissertation, Department of Anthropology, Washington State University, Pullman.Google Scholar
Hart, John P., Lovis, William A., Urquhart, Gerald R., and Reber, Eleanora A. 2013 Modeling Freshwater Reservoir Offsets on Radiocarbon-Dated Charred Cooking Residues. American Antiquity 78:536552.Google Scholar
Kennett, Douglas J., Lynn Ingram, B., Erlandson, Jon M., and Walker, Phillip L. 1997 Evidence for Temporal Fluctuations in Marine Radiocarbon Reservoir Ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science 24:10511059.Google Scholar
Kennett, Douglas J., Lynn Ingram, B., Southon, John R., and Wise, Karen 2002 Differences in l4C Age between Stratigraphically Associated Charcoal and Marine Shell from the Archaic Period Site of Kilometer 4, Southern Peru: Old Wood or Old Water? Radiocarbon 44: 5358.CrossRefGoogle Scholar
Kjelstrom, Luther C. 1995 Streamflow Gains and Losses in the Snake River and Ground- Water Budgets for the Snake River Plain, Idaho and Eastern Oregon. Professional Paper 1408-C. U.S. Geological Survey, Washington, D.C. Google Scholar
Leonhardy, Frank C. 1969 Artifact Assemblages and Archaeological Units at Granite Point Locality 1 (45WT41), Southeastern Washington. Ph.D. dissertation, Department of Anthropology, Washington State University, Pullman.Google Scholar
Leonhardy, Frank C., and Rice, David G. 1970 A Proposed Culture Typology for the Lower Snake River Region, Southwestern Washington. Northwest Anthropological Research Notes 4(1):129.Google Scholar
Lyman, R. Lee 1980 Freshwater Bivalve Molluscs in Southern Plateau Prehistory: A Discussion and Description of Three Genera. Northwest Science 54:121136.Google Scholar
Maupin, Molly A. 1995 Water-Quality Assessment of the Upper Snake River Basin, Idaho and Western Wyoming–Environmental Setting, 1980-92. Water-Resources Investigations Report 94-4221. U. S. Geological Survey, Washington, D.C. Google Scholar
Morrison, John Greenwood 1996 Archaeological Investigations at the Castle Rock Site (45WT108): A Study of Early Cascade Raw Material Utilization. Unpublished Master's thesis, Department of Anthropology, Washington State University, Pullman.Google Scholar
Osterkamp, W. R. 1998 Processes of Fluvial Island Formation, with Examples from Plum Creek, Colorado and Snake River, Idaho. Wetlands 18:530545.Google Scholar
Plew, Mark G. 2008 The Archaeology of the Snake River Plain. 2nd ed. Boise State University, Boise, Idaho.Google Scholar
Randolph, Joseph E., and Dahlstrom, Max 1977 Archaeological Test Excavations at Bernard Creek Rockshelter. University of Idaho Anthropological Research Manuscript Series Issue 42. Laboratory of Anthropology, University of Idaho, Moscow.Google Scholar
Reid, Kenneth C. 1991 An Overview of Cultural Resources in the Snake River Basin: Prehistory and Paleoenvironments. Center for Northwest Anthropology Project Report No. 13. Washington State University, Pullman.Google Scholar
Reid, Kenneth C., and Chatters, J.C. 1997 Kirkwood Bar: Passports in Time Excavations at 101H699 in the Hells Canyon National Recreation Area, Wallowa-Whitman National Forest. U.S. Forest Service, Enterprise, Oregon.Google Scholar
Sappington, Robert Lee, and Schuknecht-McDaniel, Sarah 2001 Wewukiyepuh (10NP336): Contributions of an Early Holocene Windust Phase Site to Lower Snake River Prehistory. North American Archaeologist 22:353370.Google Scholar
Sassaman, Kenneth E. 2010 The Eastern Archaic, Historicized. AltaMira Press, Lanham, Maryland.Google Scholar
Scott, William E., Pierce, Kenneth L., Platt Bradbury, J., and Forester, Richard M. 1982 Revised Quaternary Stratigraphy and Chronology in the American Falls Area, Southeastern Idaho. In Cenozoic Geology of Idaho, edited by Bill Bonnichsen and R. M. Breckinridge, pp. 581595, Bulletin 26. Idaho Bureau of Mines and Geology, Moscow, Idaho.Google Scholar
Sheppard, John C., Wigand, Peter E., Gustafson, Carl E., and Rubin, Meyer 1987 A Reevaluation of the Marmes Rockshelter Radiocarbon Chronology. American Antiquity 52:118125.Google Scholar
Sprague, Roderick, and Combes, John D. 1966 Excavations in the Little Goose and Lower Granite Dam Reservoirs, 1965. Report of Investigations No. 37. Laboratory of Anthropology, Washington State University, Pullman.Google Scholar
Stuiver, Minze, and Braziunas, Thomas F. 1993 Modeling a\Atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC. Radiocarbon 35:137189.Google Scholar
Stuiver Minze, G. W. Pearson, and Braziunas, Thomas F. 1986 Radiocarbon Age Calibration of Marine Samples Back to 9000 cal BP. Radiocarbon 28(2B):9801021.Google Scholar
Minze, Stuiver, Reimer, Paula J., and Braziunas, Thomas F. 1998 High-Precision Calibration for Terrestrial and Marine Samples. Radiocarbon 40:11271151.Google Scholar
Thomas, David Hurst 2008 Radiocarbon Dating on St. Catherines Island. In Native American Landscapes of St. Catherines Island, Georgia. Volume II: The Data, edited by David Hurst Thomas, pp. 345371. Anthropological Papers Number 88. American Museum of Natural History, New York.Google Scholar
Thomas, David Hurst, Sanger, Matthew C., and Hayes, Royce H. 2013 Revising the l4C Reservoir Correction for St. Catherines Island. In Life among the Tides: Recent Archaeology of the Georgia Bight, edited by Victor D. Thompson and David Hurst Thomas, pp. 2546. Anthropological Papers Number 98. American Museum of Natural History, New York.Google Scholar
Vogel, John S., Southon, John R., Nelson, D.E., and Brown, Timothy A. 1984 Performance of Catalytically Condensed Carbon for Use in Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289293.Google Scholar