Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:46:49.286Z Has data issue: false hasContentIssue false

On Identifying Stone Tool Production Techniques: An Experimental and Statistical Assessment of Pressure Versus Soft Hammer Percussion Flake Form

Published online by Cambridge University Press:  20 January 2017

Briggs Buchanan*
Affiliation:
Department of Anthropology, University of Tulsa, Tulsa, OK 74104, U.S.A.
Veronica Mraz
Affiliation:
Department of Anthropology, University of Tulsa, Tulsa, OK 74104, U.S.A.
Metin I. Eren*
Affiliation:
Department of Anthropology, Kent State University, Kent, OH 44242, U.S.A. Department of Archaeology, Cleveland Museum of Natural History, Cleveland, OH 44106, U.S.A.
*
(briggsbuchanan@utulsa.edu, corresponding author)

Abstract

Identifying stone tool production techniques in the archaeological record can inform on prehistoric economy, time budgets, shared cultural practices, and the spatiotemporal occurrence of technological innovations and adaptations. The pressure flaking technique is one such innovation that appears on every continent Homo sapiens colonized. Pressure flaking has long been associated with the ability of flintknappers to produce small, regularly shaped flakes that were used to maintain particular edge shapes and resharpen dull tool edges with minimal loss of raw material. Despite the importance of pressure flaking, a method for supporting the identification of pressure flakes in the archaeological record is lacking. Here, we present a stone tool replication experiment that statistically compares flakes derived from bifacial pressure flaking and soft hammer percussion flaking. Our analyses show that pressure flakes are on average lighter, shorter, narrower, and thicker than soft hammer percussion flakes. Discriminant analyses indicate that pressure flakes can be correctly classified at a rate of 70 percent in a mixed sample. Furthermore, our findings validate the assumption that pressure flakes are less variable in form compared to soft hammer percussion flakes. Based on our results, we suggest quantitatively reevaluating the presence of pressure flaking in the global archaeological record.

La identificación de técnicas de producción de herramientas talladas de piedra nos informa sobre economía, asignación de tiempo, prácticas compartidas culturales y la ocurrencia sobre tiempo e espacio de innovaciones y adaptaciones técnicas. La técnica de extracción de lascas por presión es tal innovación que aparece en todos los continentes colonizados por Homo sapiens. Desde hace mucho tiempo se ha asociado la extracción de lascas por presión con la capacidad de producir lascas pequeñas y de formas regulares. Dichas lascas sirvieron para mantener las formas de filos y para la agudización de filos desafilados con el despilfarro mínimo de materia prima. No obstante la importancia de la técnica, falta un método bien establecido para la identificación de lascas extraídos por presión. En este ensayo se presente un experimento en la duplicación de herramientas talladas. Se hace una comparación estadística entre lascas extraídos por presión bifacial y por percutor blando. Los análisis indican que las lascas de presión son más ligeros, cortos, angostos y gruesos en comparación con lascas de percutor blando. La técnica analítica de Discriminant Analyses demuestra que en una muestra de lascas de presión y de percutor blando se clasifica correctamente los 70 porciento de las lascas de presión. En adición, nuestro análisis demuestra que las formas de lascas de presión no son tan variables que las de lascas de percutor blando. En base de estos resultados se sugiere que la presencia de extracción por presión de lascas deba ser reexaminada en el registro arqueológico mundial.

Type
Reports
Copyright
Copyright © Society for American Archaeology 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahler, Stanley A. 1989 Mass Analysis of Flaking Debris: Studying the Forest Rather than the Tree. Archeological Papers of the American Anthropological Association 1:85–118.Google Scholar
Anderson, Marti J. 2001 A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecology 26:32–46.Google Scholar
Andrews, Brian N., Knell, Edward J., and Eren, Metin I. 2015 The Three Lives of a Uniface. Journal of Archaeological Science 54:228–236.Google Scholar
Archer, Will, and Braun, David R. 2010 Variability in Bifacial Technology at Elandsfontein, Western Cape, South Africa: A Geometric Morphometric Approach. Journal of Archaeological Science 37:201–209.Google Scholar
Bar-Yosef, Ofer, Eren, Metin I., Yuan, Jiarong, Cohen, David J., and Li, Yiyuan 2012 Were Bamboo Tools Made in Prehistoric Southeast Asia? An Experimental View from South China. Quaternary International 269:9–21.Google Scholar
Benjamini, Yoav, and Yekutieli, Daniel 2001 The Control of False Discovery Rate under Dependency. Annals of Statistics 29:1165–1188.Google Scholar
Bradbury, Andrew P., and Carr, Philip J. 1999 Examining Stage and Continuum Models of Flake Debris Analysis: An Experimental Approach. Journal of Archaeological Science 26:105–116.Google Scholar
Bradley, Bruce, Collins, Michael B., and Hemmings, Andrew 2010 Clovis Technology. Prehistory Press, Ann Arbor.Google Scholar
Clarkson, Chris 2006 Explaining Point Variability in the Eastern Victoria River Region, Northern Territory. Archaeology in Oceania 41:97–106.Google Scholar
Clarkson, Chris 2010 Regional Diversity within the Core Technology of the Howiesons Poort Techno-complex. In New Perspectives on Old Stones, edited by Lycett, Stephen J. and Chauhan, Parth, pp. 43–59. Springer, New York.Google Scholar
Clarkson, Chris, Shipton, Ceri, and Weisler, Marshall 2015 Front, Back, and Sides: Experimental Replication and Archaeological Analysis of Hawaiian Adzes and Associated Debitage. Archaeology in Oceania 50:71–84.Google Scholar
Collins, Michael 1975 Sources of Bias in Processual Data: An Appraisal. In Sampling in Archaeology, edited by Mueller, James W., pp. 26–32. University of Arizona Press, Tucson.Google Scholar
Costa, August G. 2010 A Geometric Morphometric Assessment of Plan Shape in Bone and Stone Acheulean Bifaces from the Middle Pleistocene Site of Castel di Guido, Latium, Italy. In New Perspectives on Old Stones, edited by Lycett, Stephen J. and Chauhan, Parth, pp. 23–41. Springer, New York.Google Scholar
Cotterell, Brian, and Kamminga, Johan 1987 The Formation of Flakes. American Antiquity 52:675–708.Google Scholar
Cotterell, Brian 1990 Mechanics of Pre-Industrial Technology: An Introduction to Mechanics of Ancient and Traditional Material Culture. Cambridge University Press, Cambridge.Google Scholar
Damlien, Hege 2015 Striking a Difference? The Effect of Knapping Techniques on Blade Attributes. Journal of Archaeological Science 63:122–135.Google Scholar
Dibble, Harold L., and Rezek, Zeljko 2009 Introducing a New Experimental Design for Controlled Studies of Flake Formation: Results for Exterior Platform Angle, Platform Depth, Angle of Blow, Velocity, and Force. Journal of Archaeological Science 36:1945–1954.Google Scholar
Donnelly, Steven M., and Kramer, Andrew 1999 Testing for Multiple Species in Fossil Samples: An Evaluation and Comparison of Tests for Equal Relative Variation. American Journal of Physical Anthropology 108:507–529.Google Scholar
Driscoll, Killian, and García-Rojas, Maite 2014 Their Lips Are Sealed: Identifying Hard Stone, Soft Stone, and Antler Hammer Direct Percussion in Palaeolithic Prismatic Blade Production. Journal of Archaeological Science 47:134–141.Google Scholar
Eerkens, Jelmer W., Ferguson, Jeffrey R., Glascock, Michael D., Skinner, Craig E., and Waechter, Sharon A. 2007 Reduction Strategies and Geochemical Characterization of Lithic Assemblages: A Comparison of Three Case Studies from Western North America. American Antiquity 72:585–597.Google Scholar
Eren, Metin I. 2013 The Technology of Stone Age Colonization: An Em pirical, Regional-Scale Examination of Clovis Unifacial Stone Tool Reduction, Allometry, and Edge Angle from the North American Lower Great Lakes. Journal of Ar chaeological Science 40:2101–2112.Google Scholar
Eren, Metin I., and Lycett, Stephen J. 2012 Why Levallois? A Morphometric Comparison of Experimental “Preferential” Levallois Flakes versus Debitage Flakes. PLoS ONE 7(1):e29273.Google Scholar
Eren, Metin I., Lycett, Stephen J., Patten, Robert J., Buchanan, Briggs, Pargeter, Justin, and O’Brien, Michael J. 2016 Test, Model, and Method Validation: The Role of Experimental Stone Artefact Replication in Hypothesis-Driven Archaeology. Ethnoarchaeology 8:103–136.Google Scholar
Eren, Metin I., Lycett, Stephen J., Roos, Christopher I., and Sampson, C. Garth 2011 Toolstone Constraints on Knapping Skill: Levallois Reduction with Two Different Raw Materials. Journal of Archaeological Science 38:2731–2739.Google Scholar
Eren, Metin I., Roos, Christopher I., Story, Brett A., von Cramon-Taubadel, Noreen, and Lycett, Stephen J. 2014 The Role of Raw Material Differences in Stone Tool Shape Variation: An Experimental Assessment. Journal of Archaeological Science 49:472–487.Google Scholar
Flenniken, Jeffrey J. 1978 Reevaluation of the Lindenmeier Folsom: A Replication Experiment in Lithic Technology. American Antiquity 43:473–480.Google Scholar
Fligner, Michael A., and Killeen, Timothy J. 1976 Distribution Free Two Sample Tests for Scale. Journal of American Statistical Association 71:210–213.Google Scholar
Goebel, Ted, Waters, Michael R., and Dikova, Margarita 2003 The Archaeology of Ushki Lake, Kamchatka, and the Pleistocene Peopling of the Americas. Science 301:501–505.Google Scholar
Gurtov, Alia N., Buchanan, Briggs, and Eren, Metin I. 2015 “Dissecting” Quartzite and Basalt Bipolar Flake Shape: A Morphometric Comparison of Experimental Replications from Olduvai Gorge, Tanzania. Lithic Tech nology 40:332–341.Google Scholar
Gurtov, Alia N., and Eren, Metin I. 2014 Lower Paleolithic Bipolar Reduction and Hominin Selection of Quartz at Olduvai Gorge, Tanzania: What’s the Connection? Quaternary International 322:285–291.Google Scholar
Hammer, Øyvind, Harper, David A. T., and Ryan, Paul D. 2001 PAST- Palaeontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica 4:9. Electronic document, www.uv.es/˜pardomv/pe/2001_1/past/pastprog/past.pdf, accessed August 22, 2016.Google Scholar
Hayden, Brian 1987 From Chopper to Celt: The Evolution of Resharpening Techniques. Lithic Technology 16:33–43.Google Scholar
Henry, Don O., Haynes, C. Vance, and Bradley, Bruce 1976 Quantitative Variation in Flaked Stone Debitage. Plains Anthropologist 21:57–61.Google Scholar
Kooyman, Brian P. 2000 Understanding Stone Tools and Archaeological Sites. University of New Mexico Press, Albuquerque.Google Scholar
Kovarovic, Kris, Aiello, Leslie C., Cardini, Andrea, and Lockwood, Charles A. 2011 Discriminant Function Analysis in Archaeology: Are Classification Rates Too Good to be True? Journal of Archaeological Science 38:3006–3018.Google Scholar
Lycett, Stephen J., and Chauhan, Parth 2010 Analytical Approaches to Palaeolithic Technologies: An Introduction. In New Perspectives on Old Stones, edited by Lycett, Stephen J. and Chauhan, Parth, pp. 1–22. Springer, New York.Google Scholar
Lycett, Stephen J., and Eren, Metin I. 2013 Levallois Lessons: The Challenge of Integrating Mathematical Models, Experiments, and the Archaeological Record. World Archaeology 45:519–538.Google Scholar
Lycett, Stephen J., Cramon-Taubadel, Noreen von, and Foley, Robert A. 2006 A Crossbeam Co-Ordinate Caliper for the Morphometric Analysis of Lithic Nuclei: A Description, Test, and Empirical Examples of Application. Journal of Archaeological Science 33:847–861.Google Scholar
Lycett, Stephen J., and Cramon-Taubadel, Noreen von 2015 Toward a “Quantitative Genetic” Approach to Lithic Variation. Journal of Archaeological Method and Theory 22:646–675.Google Scholar
Magnani, Matthew, Rezek, Zeljko, Lin, Sam C., Chan, Annie, and Dibble, Harold L. 2014 Flake Variation in Relation to the Application of Force. Journal of Archaeological Science 46:37–49.Google Scholar
Manly, Bryan F. J. 2004 Multivariate Statistical Methods: A Primer. 3rd ed. CRC Press, Boca Raton.Google Scholar
McPherson, Glen 1990 Statistics in Scientific Investigation: Its Basis, Application, and Interpretation. Springer-Verlag, New York.Google Scholar
Moore, Mark W. 2014 Bifacial Flintknapping in the Northwest Kimberley, Western Australia. Journal of Archaeological Method and Theory 22:913–951.Google Scholar
Mourre, Bincent, Villa, Paola, and Henshilwood, Christopher S. 2010 Early Use of Pressure Flaking on Lithic Artifacts at Blombos Cave, South Africa. Science 330:659–662.Google Scholar
Narum, Shawn R. 2006 Beyond Bonferroni: Less Conservative Analyses for Conservation Genetics. Conservation Genetics 7:783–787.Google Scholar
Odell, George 2003 Lithic Analysis. Springer Science and Business Media, New York.Google Scholar
Patten, Robert J. 1978 “Push” vs. “Pull” Flaking. Lithic Technology 7:3–4.Google Scholar
Patten, Robert J. 2009 Old Tools—New Eyes: A Primal Primer of Flintknapping. Stone Dagger Publications, Lakewood.Google Scholar
Patterson, Leland W., and Sollberger, John B. 1978 Replication and Classification of Small Size Debitage. Plains Anthropologist 23:103–112.Google Scholar
Schindler, Bill, and Koch, Jeremy 2012 Flakes Giving You Lip? Let Them Speak: An Examination of the Relationship between Percussor Type and Lipped Platforms. Archaeology of Eastern North America 40:99–106.Google Scholar
Sellet, Frédéric 2004 Beyond the Point: Projectile Manufacture and Be havioral Inference. Journal of Archaeological Science 31:1553–1566.Google Scholar
Sollberger, John B. 1971 A Technological Study of Beveled Knives. Plains Anthropologist 16:209–2018.Google Scholar
Stafford, Michael 2003 The Parallel-Flaked Flint Daggers of Late Neolithic Denmark: An Experimental Perspective. Journal of Archaeological Science 30:1537–1550.Google Scholar
Tabachnick, Barbara G., and Fidell, Linda S. 1996 Using Multivariate Statistics. Harper & Row, New York.Google Scholar
Tindale, Norman B. 1985 Australian Aboriginal Techniques of Pressure-Flaking Stone Implements: Some Personal Observations. In Stone Tool Analysis: Essays in Honor of Don E. Crabtree, edited by Plew, Mark G., Woods, James C., and Pavesic, Max G., pp. 1–34. University of New Mexico Press, Albuquerque.Google Scholar
Towner, Ronald, and Warburton, Miranda 1990 Projectile Point Rejuvenation: A Technological Analysis. Journal of Field Archaeology 17:311–321.Google Scholar
Tringham, Ruth, Cooper, Glenn, Odell, George, Voytek, Barbara, and Whitman, Anne 1974 Experimentation in the Formation of Edge Damage: A New Approach to Lithic Analysis. Journal of Field Archaeology 1:171–196.Google Scholar
Whittaker, John C. 1994 Flintknapping: Making and Understanding Stone Tools. University of Texas Press, Austin.Google Scholar
Zar, Jerrold H. 1999 Biostatistical Analysis. 4th ed. Prentice Hall, New Jersey.Google Scholar
Supplementary material: PDF

Buchanan et al. Supplementary Material

Figure S1

Download Buchanan et al. Supplementary Material(PDF)
PDF 205.8 KB
Supplementary material: PDF

Buchanan et al. Supplementary Material

Table S1

Download Buchanan et al. Supplementary Material(PDF)
PDF 239.4 KB