Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T01:57:07.459Z Has data issue: false hasContentIssue false

Analysis of Ceramic Color by Spectral Reflectance

Published online by Cambridge University Press:  20 January 2017

Marco Giardino
Affiliation:
National Aeronautics and Space Administration, Earth System Science Office, Stennis Space Center, MS 39529
Richard Miller
Affiliation:
National Aeronautics and Space Administration, Earth System Science Office, Stennis Space Center, MS 39529
Rachel Kuzio
Affiliation:
National Aeronautics and Space Administration, Earth System Science Office, Stennis Space Center, MS 39529
Dean Muirhead
Affiliation:
Louisiana State University, Department of Civil and Environmental Eingineering, Baton Rouge, LA 70803

Abstract

Radiometric and visual techniques are compared as quantitative methods for determining pottery color. An analysis of 52 prehistoric sherds selected at random from a multicomponent site indicates an increase in the accuracy and efficiency in determining color using a spectroradiometer over subjective visual observations. Further, radiometric data can be transformed to CIE chromaticity coordinates and Munsell color from spectral reflectance curves and analyzed directly to access quantitative accuracy. The color, or spectral reflectance, of filter paper samples and a subset of the sherds measured by a standard field radiometer were strongly correlated with measurements of color derived from a low-cost, PC-based color sensor traditionally used in graphic arts applications. Radiometric data were compared with visual observations of Munsell color conducted by two archaeologists. The two methods were most similar in estimates of value and chroma. The human observers differed widely in their estimates of hue. The radiometric approach provides more consistent and exact measurements of color than does visual observation, providing archaeologists with an efficient, effective, and a potential low-cost method to determine an important common attribute of artifacts.

Résumé

Résumé

La técnica radiométrica y la técnica visual son comparadas como métodos cuantitativos para determinar el color de artefactos hechos de barro (alfarería). Un análisis de cincuenta y dos (52) pedazos de piezas prehistóricas (seleccionadas al azar de un sitio con multitud de componentes) indica que el espectroradiómetro, comparado con el método visual, produce medidas de color con mucha más eficacia y exactitud. Más aún, datos radiométricos pueden ser transformados a cooráinadas cromdticas CIE y las curvas de reflectancia espectral pueden ser transformadas a color Munsell y analizadas directamente obteniendo así exactitud cuantitativa. Datos radiométricos son comparados con observaciones visuales (expresadas en color Munsell) dirigidas por dos arqueólogos. Ambos métodos producen estimados similares con respecto a valor y croma. El método visual produce observaciones més confiables con respecto al tinte (tono del color), la caracteristica del color a la cual el ojo humano es más sensitivo. Medidas de color (reflectancia espectral) obtenidas con un radiómetro de campo standard fueron altamente correlacionadas con medidas de color obtenidas de un sensor de color de los tradicionalmente usados en aplicaciones de artes gráficas. El método del radiómetro es consistente y produce medidas de color más exactas que el método visual, por lo que provee a los arqueólogos de un método—eficiente, efectivo, y posiblemente de bajo costo—para determinar un atributo común e importante de los artefactos arqueológicos.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Bishop, R. L., Canouts, V., De Atley, S., Qoyawayma, A., 1988 The Formation of Ceramic Analytical Groups : Hopi Pottery Production and Exchange, A.D. 1300-1600. Journal of Field Archaeology 15 : 317338.Google Scholar
Committee on Colorimetry, Optical Society of America 1963 The Science of Color. Optical Society of America, Washington, D.C. Google Scholar
Cranshaw, T. E., Dale, B. W., Longworth, C. O., and Johnson, C. E. 1985 Mbssbauer Spectroscopy and Its Applications. Cambridge University Press, Cambridge.Google Scholar
Giardino, M. J., and Jones, R. III 1996 Archaeological Excavations at the Jackson Landing Site, Hancock County, Mississippi. Unpublished manuscript on file with the Earth System Science Office, National Aeronautics and Space Administration, Stennis Space Center, Mississippi.Google Scholar
Hardy, A. C. 1929 A Recording Photoelectric Color Analyser. Journal of the Optical Society of America 18 : 96117.CrossRefGoogle Scholar
Hardy, A. C. 1935 A New Recording Spectrophotometer. Journal of the Optical Society of America 25 : 305311.CrossRefGoogle Scholar
Jurney, D. H., and Perttula, T. K. 1995 Nineteenth-century Alibamu-Koasati Pottery Assemblages and Culinary Traditions. Southeastern Archaeology 14 : 1730.Google Scholar
Luer, G. M. 1996 Mississippian Ceramic Jars, Bottles, and Gourds as Compound Vessels. Southeastern Archaeology 15 : 181191.Google Scholar
Luer, G. M. 1987 CIE Munsell Conversion Program, Version 7.1. Kollmorgen Instruments, New Windsor, New York.Google Scholar
Luer, G. M. 1994 Munsell Soil Color Charts. Kollmorgen Instruments, New Windsor, New York.Google Scholar
Maniatis, Y, Jones, R. E., Whitbread, I. K., Kostikas, A., 1984 Punic Amphoras Found at Corinth, Greece : An Investigation of Their Origin and Technology. Journal of Field Archaeology 11 : 205222.Google Scholar
Mather, P. 1987 Computer Processing of Remotely Sensed Images : An Introduction. John Wiley, New York.Google Scholar
Nance, C. R. 1976 Artifact Attribute Covariation as the Product of Interlevel Site Mixing. Midcontinental Journal of Archaeology 1 : 229231.Google Scholar
Overheim, R. D., and Wagner, D. L. 1982 Light and Color. Wiley, New York.Google Scholar
Paul, A. 1990 The Use of Color in Paracas Necropolis Fabrics : What Does It Reveal about the Organization of Dying, Designing and Society? National Geographic Research and Exploration 6 : 721.Google Scholar
Phillips., P. 1970 Archaeological Survey in the Lower Yazoo Basin, Mississippi, 1949-1955. Papers of the Peabody Museum of American Archaeology and Ethnology Vol. 25. Harvard University, Cambridge, Massachusetts.Google Scholar
Rice, P. 1987 Pottery Analysis : A Source Book. University of Chicago Press, Chicago.Google Scholar
Shepard, A. O. 1956 Ceramics for the Archaeologist. Publication No. 609. Carnegie Institution of Washington, Washington, D.C. Google Scholar
Steponaitis, V. P., Blackman, M. J., and Neff, H. 1996 Large-Scale Patterns in the Chemical Composition of Mississippian Pottery. American Antiquity 61 : 555572.CrossRefGoogle Scholar
Wasserman, G. S. 1978 Color Vision : An Historical Introduction. John Wiley, New York.Google Scholar
Wyszecki, G. 1989 Color. World Book Encyclopedia. Vol. 4, pp. 816827. World Book, Chicago.Google Scholar
Wyszecki, G., and Stiles, W. S. 1982 Color Science : Concepts and Methods, Quantitative Data and Formulae. John Wiley, New York.Google Scholar