Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:27:13.206Z Has data issue: false hasContentIssue false

Where in the World Does Obsidian Hydration Dating Work?

Published online by Cambridge University Press:  20 January 2017

Rosanna Ridings*
Affiliation:
Department of Earth and Planetary Sciences, Campus Box 1169, Washington University, One Brookings Drive, St. Louis, MO 63130

Abstract

Results of a field study at Pot Creek Pueblo indicate that when effective hydration temperature varies significantly with depth, errors in obsidian hydration age estimates can occur if hydration rate constants are extrapolated to depth-specific effective hydration temperatures. This problem will be particularly severe in continental climates, but will have some effect anywhere the amplitude of the annual surface temperature wave exceeds 2-3°C.

Resumen

Resumen

Investigaciones de campo han producido evidencia de errores potenciales en la técnica de fechamiento por hidratación de obsidiana, que resultan cuando determinaciones en el laboratorio de las constantes utilizadas en la ecuación de Arrhenius son aplicadas a las temperaturas efectivas para hidratación de grosor específico. Este problema serí particularmente severo en climas continentales, pero tambien sucederá dondequiera que la amplitud de la onda de temperatura superficial anual exceda 2-3°C.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ambrose, W. R. 1976 Intrinsic Hydration Rate Dating of Obsidian. In Advance in Obsidian Glass Studies, edited by Taylor, R. E, pp. 81105. Noyes Press, Park Ridge, New Jersey.Google Scholar
Ambrose, W. R. 1984 Soil Temperature Monitoring at Lake Mungo: Implications for Racemisation Dating. Australian Archaeologist 9: 6474.CrossRefGoogle Scholar
Ambrose, W. R. 1993 Obsidian Hydration Dating. In Archaeometry, Current Australasian Research, edited by Fankauser, B. L. and Bird, J.R. pp. 7984. Occasional Papers in Prehistory No. 22, Department of Prehistory, Research School of Pacific Studies, Australian National University, Canberra.Google Scholar
Carslaw, H. S., and Jaeger, J. C. 1959 Conduction of Heat in Solids. 2nd ed. Oxford University Press, Oxford.Google Scholar
Crown, P. L. 1991 Evaluating the Construction Sequence and Population of Pot Creek Pueblo, Northern New Mexico. American Antiquity 56: 291314.CrossRefGoogle Scholar
Ebert, W. L., Hoburg, R. F., and Bates, J. K. 1991 The Sorption of Water on Obsidian and a Nuclear Waste Glass. Physics and Chemistry of Glasses 32: 133137.Google Scholar
Evans, C, and Meggers, B. J. 1960 A New Dating Method Using Obsidian: Part II, An Archaeological Evaluation of the Method. American Antiquity 25: 523537.CrossRefGoogle Scholar
Farrer, R., Polka, R., and Selinfreund, M. 1983 Predictions of Annual Underground Temperature Profiles for Thirty New Mexico Locations. New Mexico Solar Energy Institute, Las Cruces.Google Scholar
Freter, A. 1993 Obsidian-Hydration Dating: Its Past, Present, and Future Application in Mesoamerica. Ancient Mesoamerica 4: 285303.Google Scholar
Friedman, I., Smith, R. L., and Long, W. D. 1966 Hydration of Natural Glass and Formation of Perlite. Geological Society of America Bulletin 77: 323328.Google Scholar
Friedman, I., Trembour, F. W., Smith, F. L., and Smith, G. I. 1990 Obsidian Hydration Dating as Affected by Relative Humidity? Manuscript on file, U. S. Geological Survey, Denver, Colorado.Google Scholar
Friedman, I., Trembour, F. W., Smith, F. L., and Smith, G. I. 1994 Is Obsidian Hydration Dating Affected by Relative Humidity? Quaternary Research 41: 185190.Google Scholar
Hughes, R. E. 1994 Intrasource Chemical Variability of Artefact-Quality Obsidians from the Casa Diablo Area, California. Journal of Archaeological Science 21: 263271.CrossRefGoogle Scholar
Labs, K., and Harrington, K. 1982 A Comparison of Ground and Above-Ground Climates for Identifying Appropriate Cooling Strategies. Passive Solar Journal 1: 411.Google Scholar
Lee, R. 1969 Chemical Temperature Integration. Journal of Applied Meteorology 8: 423430.2.0.CO;2>CrossRefGoogle Scholar
Lee, R. R., Leich, D. A., Tombrello, T. A., Ericson, J. E., and Friedman, I. 1974 Obsidian Hydration Profile Measurements Using a Nuclear Reaction Technique. Nature 250: 4447.CrossRefGoogle Scholar
McGrail, B. P., Pederson, L. R., Strachan, D. M., Ewing, R. C., 1988 Obsidian Hydration Dating—Field, Laboratory, and Modeling Results. Materials Research Society Symposium Proceedings 123: 263269. Pittsburgh.Google Scholar
Michels, J. W. 1967 Archeology and Dating by Hydration of Obsidian. Science 158: 211214.Google Scholar
Michels, J. W., and Bebrich, C. A. 1971 Obsidian Hydration Dating. In Dating Techniques for the Archaeologist, edited by Michael, H. N. and Ralph, E.K. pp. 164221. MIT Press, Cambridge, Massachusetts.Google Scholar
Michels, J. W., Tsong, I. S. T., and Smith, G. A. 1983 Experimentally Derived Hydration Rates in Obsidian Dating. Archaeometry 25(2): 107117.CrossRefGoogle Scholar
Newman, J. R., and Nielsen, R. L. 1985 Initial Notes on the X-Ray Fluorescence Sourcing of Northern New Mexico Obsidians. Journal of Field Archaeology 12: 377383.Google Scholar
Norton, D. R., and Friedman, I. 1981 Ground Temperature Measurements: Part 1, Pallmann Technique. Geological Survey Professional Paper 1203, U.S. Government Printing Office, Washington, D.C. Google Scholar
Pearce, E. A., and Smith, C. G. 1984 The Times Books World Weather Guide. New York Times Book Company, New York.Google Scholar
Pearce, E. A., and Smith, C. G. 1991 Obsidian Hydration Dating: The Effects of Mean Exponential Ground Temperature and Depth of Artifact Recovery. Journal of Field Archaeology 18: 7785.Google Scholar
Pearce, E. A., and Smith, C. G. 1993 Variation of Effective Hydration Temperature in Obsidian Hydration Dating. Poster presented at the 58th Annual Meeting of the Society for American Archaeology, St. Louis.Google Scholar
Pearce, E. A., and Smith, C. G. 1994 Study of Obsidian Hydration and Climatic Change at Pot Creek Pueblo. Ph.D. dissertation, Department of Anthropology, Southern Methodist University, Dallas, Texas. University Microfilms, Ann Arbor.Google Scholar
Russell, G. S. 1981 Preliminary Hydration Rates for the Polvadera Peak and Jemez Mountains Obsidian Sources, New Mexico. In Obsidian Dates III, edited by Meighan, C. W. and Russell, G.S. pp. 142145. Monograph XVI, Institute of Archaeology. University of California, Los Angeles.Google Scholar
Russell, G. S. 1989 Obsidian Dating: Recent Advances in the Experimental Determination and Application of Hydration Rates. Archaeometry 31: 193206.Google Scholar
Russell, G. S. 1993a The Importance of Soil Temperature and Relative Humidity in Obsidian Dating, with Case Examples from Easter Island. In Easter Island Studies: Contributions to the History ofRapanui in Memory of William T. Mulloy, edited by Fischer, S. R., pp. 96102. Oxbow Monograph 32. Oxbow Books, Oxford, England.Google Scholar
Stevenson, C. M., Knaus, E., Mazer, J. J., and Bates, J. K. 1993b Homogeneity of Water Content in Obsidian from the Coso Volcanic Field: Implications for Obsidian Hydration Dating. Geoarchaeology 8: 371384.Google Scholar
Trembour, E, Smith, F. L., and Friedman, I. 1988 Induced Obsidian Hydration Experiments: An Investigation in Relative Dating. Materials Research Society Symposium Proceedings 123: 245251.CrossRefGoogle Scholar
Pittsburgh, . 1973 The Climate of New Mexico. Rev. ed. New Mexico State Planning Office, Santa Fe.Google Scholar
Turcotte, D. L., and Schubert, G. 1982 Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley and Sons, New York.Google Scholar
van Wijk, W. R., and de Vries, D. A. 1963 Periodic Temperature Variations in a Homogeneous Soil. In Physics of Plant Environment, edited by van Wijk, W. R., pp. 102143. North-Holland Publishing, Amsterdam.Google Scholar
Wetherington, R. K. 1968 Excavations at Pot Creek Pueblo. Fort Burgwin Research Center, No. 6. Ranchos de Taos, New Mexico.Google Scholar