Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-30T23:25:08.877Z Has data issue: false hasContentIssue false

Differential Acridine Orange Staining of Human Chromosomes

Published online by Cambridge University Press:  27 January 2025

G.L. Castoldi*
Affiliation:
Medical Clinic of the University, Ferrara, Italy
G.D. Grusovin
Affiliation:
Medical Clinic of the University, Ferrara, Italy
G.L. Scapoli
Affiliation:
Medical Clinic of the University, Ferrara, Italy
R. Spanedda
Affiliation:
Medical Clinic of the University, Ferrara, Italy
*
Clinica Medica dell'Università, Ferrara, Italy

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The acridine orange staining of metaphases previously treated with hot salt solutions, exhibits a differential banding pattern of the chromosomes. According to the physicochemical interpretation of the stained structures, the green and red fluorescent segments of the chromosomes should be considered as constituted respectively by double-stranded DNA and single-stranded DNA. The banding pattern is relatively consistent in different metaphases, although some occasional variations of the bands may be referred to the interference of chromosomal acid proteins. In general, the sequence of the bands is compatible with the picture of the reverse banding.

Riassunto

Riassunto

L'applicazione della colorazione con arancio di acridina a metafasi precedentemente trattate con soluzioni saline a caldo fornisce, in fluorescenza, una colorazione differenziale di bande a livello dei cromosomi. L'interpretazione fisico-chimica delle modalità di estrinsecazione della colorazione consente di definire come composte da DNA double stranded le regioni colorate in verde e come composte da DNA single stranded quelle colorate metacromaticamente in rosso arancio. La dislocazione delle bande appare relativamente costante, seppure con occasionali deformazioni, per la possibile interferenza di strutture quali mucopolisaccaridi e proteine acide, nelle fasi di colorazione. Il quadro presentato dalla sequenza delle bande lungo i singoli cromosomi sembra nel complesso sovrapporsi a quello del reverse banding.

Résumé

Résumé

La coloration de métaphases préalablement traitées par des solutions salines à chaud, avec orange d'acridine, démontre la présence de bandes différemment fluorescentes à niveau des chromosomes. L'interprétation des modalités physico-chimiques de la coloration permet de considérer comme constituées par double-stranded DNA les régions chromosomiques qui donnent une fluorescence verte et par single-stranded DNA les régions métachromatiquement colorées en rouge-orange. La disposition des bandes est relativement constante dans des différentes métaphases, bien que des variations occasionnelles peuvent se manifester peut-être par rapport à l'interférence de protéines acides le long des chromosomes. Le tableau présenté par les bandes fluorescentes au niveau des chromosomes est dans l'ensemble comparable à celui du reverse banding.

Zusammenfassung

Zusammenfassung

Die durch AO Färbung von mit Salzlösungen im voraus behandelten Metaphasen zeigt eine Reihe unterscheidlich fluoreszierender Streifen der Chromosomen. Die physico-chemische Grundlage der Färbung mit AO erlauben die grüne fluoreszierende Streifen der Chromosomen als von double-stranded DNA und die röte fluoreszierende Streifen als von single-stranded DNA zusammengesetzt zu betrachten. Die Streifenanordnung scheint relativ konstant zu sein; einige Abweichungen sind in der Hauptsache zu der Interferenz säurer proteischen Strukturen zurückzuführen. Im allegemeinen ist die Streifenreihe vergleichbar mit dem Bild des reverse banding.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1978

References

REFERENCES

Baserga, A., Castoldi, G.L. 1972. Applicazione allo studio delle zone eterocromatiche dei cromosomi umani della fluorescenza differenziale mediante arancio di acridina. Atti Simp. Int. sul “DNA satellite”, Montecatini, 4-5 11 1972.Google Scholar
Bobrow, M., Collacott, H.E.A.C., Madan, K. 1972. Chromosome banding with acridine orange. Lancet, 2: 1311.CrossRefGoogle ScholarPubMed
Bradley, D.F., Wolf, M.K. 1959. Aggregation of dyes bound to polyanions. Proc. Natl. Acad. Sci. USA, 45: 944952.CrossRefGoogle ScholarPubMed
Breg, W.R., Miller, O.J., Miller, D.A., Allerdice, P.W., 1971. Distinctive fluorescence of quinacrine-labelled human G group chromosomes. Nature New Biol., 231: 276277.CrossRefGoogle ScholarPubMed
Caspersson, T., Farber, S., Foley, G.E., Kudynowski, J., Modest, E.J., Simonsson, E., Wagh, U., Zech, L. 1968. Chemical differentiation along metaphase chromosomes. Exp. Cell Res., 49: 219222.CrossRefGoogle ScholarPubMed
Caspersson, T., Lomakka, G., Zech, L. 1971. The 24 fluorescence patterns of the human metaphase chromosomes — distinguishing characters and variability. Hereditas, 67: 89102.CrossRefGoogle Scholar
Clark, R.J., Felsenfeld, G. 1971. Structure of chromatin. Nature New Biol., 229: 101106.CrossRefGoogle ScholarPubMed
Corneo, G., Ginelli, E., Polli, E. 1970. Repeated sequences in human DNA. J. Mol. Biol., 48: 319327.CrossRefGoogle ScholarPubMed
De la Chapelle, A., Schroeder, J., Selander, R.K. 1971. Repetitious DNA in mammalian chromosomes. Hereditas, 69: 149153.CrossRefGoogle ScholarPubMed
Dutrillaux, B., Lejeune, J. 1971. Sur une nouvelle technique d'analyse du caryotype humain. C.R. Acad. Sci. [D] (Paris), 272: 26382640.Google Scholar
Gagné, R., Tanguay, R., Laberge, C. 1971. Differential staining patterns of heterochromatin in man. Nature, 232: 2930.Google ScholarPubMed
Jones, K.W., Corneo, G. 1971. Location of satellite and homogeneous DNA sequences on human chromosomes. Nature New Biol., 233: 268271.CrossRefGoogle ScholarPubMed
Kasten, F.H. 1966. Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int. Rev. Cytol., 21: 141202.CrossRefGoogle Scholar
Lerman, L.S. 1961. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol., 3: 1830.CrossRefGoogle ScholarPubMed
Pachmann, U., Riegler, R. 1972. Quantum yeld of acridines interacting with DNA of defined base sequence. A basis for the explanation of acridine bands in chromosomes. Exp. Cell Res., 67: 602608.CrossRefGoogle Scholar
Pearson, P. 1972. The use of new staining techniques for human chromosome identification. J. Med. Genet., 9: 264275.CrossRefGoogle ScholarPubMed
Riegler, R. 1966. Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol. Scand., 67 (Suppl. 267): 1121.Google Scholar
Saunders, G., Hsu, T.C., Getz, M.J., Simes, E.L., Arrighi, F.E. 1972. Location of a human satellite DNA in human chromosomes. Nature New Biol., 236: 244246.CrossRefGoogle Scholar
Stockert, J.C. 1972. Differential fluorescence in metaphase chromosomes stained by acridine orange. Stain Technol., 46: 103105.CrossRefGoogle Scholar
Yunis, J.J., Roldan, L., Yasmineh, W.G., Lee, J.C. 1971. Staining of satellite DNA in metaphase chromosomes. Nature, 231: 532533.CrossRefGoogle ScholarPubMed