No CrossRef data available.
Article contents
Genesis of Genetics. The growing Knowledge of Heredity before and after Mendel (A brief historical synopsis written in honor of the Institutum Gregorio Mendel and the International Symposium on Medical Genetics held in Rome, 6-7 September 1953)
Published online by Cambridge University Press: 01 August 2014
Summary
The historiography of genetics is not very extensive. As a tribute to Gregor Mendel the Genesis of modern Genetics is briefly described in its full range, from the Paleolithic Age to Lysenko. Since the earliest times, the knowledge of heredity had been growing in proportion with the development of ideas on reproduction and continuity of the species. For various forms of life, the basic problems of interest remained essentially the same during all historical periods; only the emphasis shifted from the gross to the more detailed, and the answers oscillated between the theories of preformation and epigenesis. Against this historical background, Mendel and the Mendelian laws stand out as the basic foundation of genetics.
The vital growing ideas on generation and evolution of plants, animals, and man are briefly reviewed and exposed as they had occurred before and after Mendel. The historical sketch leads us to ancient Assyria, India, the biblical times, and the classical Antiquity, to the early Greek philosophers and physicians whose works are sampled to illustrate the ancient beliefs concerning the role of male and female semen in generation, and concerning the proportional share of parents in the formation of body and mind of the offspring. The medieval knowledge on heredity is at its highest in the writings of Albertus Magnus whose work represents the refinement of scholastic science.
In these earlier times people did not know the exact functions of the organs of generation, or the true nature of sex. After the invention of the microscope in the 16th, and with a more liberal spirit of research in the 17th centuries, the sexual life and the male and female germ cells of many bisexual beings, including man, were gradually discovered during the 200-year period from 1677 to 1877. This happened with all sorts of speculation about heredity and about the origin and evolution of life. Meanwhile, many practical and theoretical hybridizers saw the various peculiarities in the filial generations, and many observed normal and abnormal characters transmitted from parents to offspring. Yet, none could formulate these observations into a mathematical regularity of inheritance until the reports of Gregor Mendel in 1865 on the result of his plant-crossings.
His discovery was buried, however, until 1900 when other biologists came to the same results, and revived and accepted his rules as the laws of heredity. From then on, modern genetics advanced rapidly and branched into many activities, everywhere fully supporting the views of Mendel. Thus, Mendel is truly the father of genetics, except for communist Russians whose political theories demand the denial of Mendelian heredity and the adherence to older discarded theories.
Genetics has the destiny to solve many practical problems in the life of nations, and to investigate a number of important yet unknown factors, in order to utilize the gene theory of heredity, and the “nuclear energy”, for a wider and brighter service of humanity.
- Type
- Research Article
- Information
- Acta geneticae medicae et gemellologiae: twin research , Volume 2 , Issue 3 , September 1953 , pp. 237 - 332
- Copyright
- Copyright © The International Society for Twin Studies 1953
References
1 Roth, E., Die Tatsachen der Vererbung in geschichtlich-kritischer Darstellung. 2. Aufl., Berl., 1885 Google Scholar.
2 Thompson, J. A., The history and theory of heredity. Proc. R. Soc. Edinburgh (1888–1889) 1890, 16: 91–116 CrossRefGoogle Scholar.
3 East, E. M., Two decades of genetic progress. Rep. Smithson. Inst. (1922) 1924, 285–95Google Scholar.
4 Roberts, H. F., The founders of the art of breeding. J. Hered., 1919, 10: 99–106 CrossRefGoogle Scholar.
5 Johannsen, W., Hundert Jahre Vererbungsforschung. Verh. Ges. Deut. Naturforsch. (1922) 1923, 87: 70–104 Google Scholar.
8 Punnett, R. C., An early discussion of heredity. Science, 1911, 34: 800 CrossRefGoogle ScholarPubMed.
7 Sirks, M. J., Praemendelistische erfelijkheidstheorieen. Genetica, 1920, 2: 323–46CrossRefGoogle Scholar.
8 Du Bois, A. M., Die Entwicklung der Genetik. Ciba Zschr., 1937 (Mai No. 45)Google Scholar.
9 Wilson, E. B., The cell. 3. ed. N. Y., 1925 Google Scholar. – has a historical introduction.
10 Krumbiegel, I., Die praemendelistische Vererbungsforschung und ihre Grundlagen. Bibliogr. genet., 1933, 10: 250–97Google Scholar.
11 Lehmann, E., Aus der Frühzeit der pflanzlichen Bastardierungskunde. Arch. Gesch. Naturwiss., 1916, p. 78 Google Scholar.
12 May, W., Antike Vererbungstheorien. Naturwiss. Wschr., 1917, 16: 9 Google Scholar.
13 Weismann, A., Zur Geschichte der Vererbungstheorien. Zool. Anz., 1886, 345–6Google Scholar.
14 Keudel, K., Zur Geschichte und Kritik der Grundbegriffe der Vererbungslehre. Arch. Gesch. Med., 1936, 28: 381–416 Google Scholar. – Based chiefly on Johannsen's results; also with reference to some philosophy of genetics.
15 Stiles, K. A., Recent advances in human genetics. Proc. Iowa Acad. Sc., 1941, 48: 73–81 Google Scholar.
16 Muller, H. J., Progress and prospects in human genetics. Am. J. Human Genet., 1949, 1: 1–18 Google Scholar.
17 Rostand, J., Esquisse d'une histoire de l'atomisme en biologie. Rev. hist, sc., Par., 1948–1949, 2: 241–65Google Scholar.
18 Focke, W. O., Pflanzenmischlinge. Berl., 1881 Google Scholar. – Its second part, 429-445, is: Geschichte der Bastardkunde.
19 Pimentel, W., Genetica; sintese da sua evoluçâo. Rev. milit. med. vet., Rio, 1939, 2: No. 21, 1531–48Google Scholar.
20 Vasco, , Apuntes históricos y médicos sobre la herencia. Pabellón méd., Madr., 1875, 15: 183; 195Google Scholar.
21 Uda, Hajime, Mendel iden-gaku. Tokyo, Seikatu-sya, 1948. 227 p.Google Scholar – includes also data on Japanese geneticists.
22 Ballantyne, J. W., Antenatal pathology and heredity in the Hippocratic writings. Tr. Edinburgh Obst. Soc., 1894–1895, 20: 51–66 Google Scholar.
23 Johannsen, W., Die Vererbungslehre bei Aristoteles und Hippokrates im Lichte heutiger Forschung. Naturwissenschaften, 1917, 5: 389–97CrossRefGoogle Scholar.
24 Balss, H., Die Zeugungslehre und Embryologie in der Antike. Quellen und Stud. Gesch. Naturwiss. Med., 1936, 5: 1–82 Google Scholar. – includes also heredity, and hybrids.
25 Hommel, H., Moderne und hippokratische Vererbungstheorien. Arch. Gesch. Med., 1927, 19: 105 etcGoogle Scholar.
26 Montalenti, G., Il sistema Aristotelico della generazione degli animali. Rass. stud. sess., 1926, 6: 113–39Google Scholar.
27 Stiebitz, F., Ueber die Vererbung bei Aristoteles. Arch. Gesch. Med., 1930, 23: 332 etcGoogle Scholar.
28 Barthélemy-St., Hilaire J., Traité de la génération des animaux d'Aristote. Paris, 1887, 1: 1–124 Google Scholar. – This is the preface; it gives a good outline of the history of comparative embryology.
29 McCartney, E. S., Acquired and transmitted characters in Greek lore of heredity. Papers Michigan Acad. Sc., 1927, 7: 21–40 Google Scholar.
30 Hervé, G., La génétique prémendélienne: Aristote et Réaumur. Rev. antrop., Par., 1922, 32: 285–97Google Scholar.
31 Balss, H., Ueber die Vererbungstheorie des Galenos. Sudhofs Arch., 1934, 27: 229–34Google Scholar.
32 Balss, H. Präformation und Epigenese in der griechischen Philosophie. Arch. stor. sc., 1923, 4: 319–25Google Scholar.
33 Taschenberg, O., Historische Entwickelung der Lehre von der Parthenogenesis. Abh. Naturforsch. Ges. Halle, 1892, 17: 365–453 Google Scholar.
34 Kehr, J., Die Aufnahme des menschlichen Eies in die Tuba und seine Fortleitung bis in den Uterus; eine historisch-kritische Studie. Jena, 1885 Google Scholar.
35 Posner, C., Rudolf Virchow und das Vererbungsproblem. Arch. Frauenh., 1922, 8: 14–23 Google Scholar.
36 Franz, B., Altes und Neues über die Chromosomentheorie der Vererbung. Natur, Lpz., 1921, 12: 239–43Google Scholar.
37 Heinze, M., Antiker Darwinismus. Neues Reich, 1877, 1:Google Scholar
38 Zeller, E., Ueber die griechischen Vorgänger Darwins. Abh. Berl. Akad. Wiss., Vortr., No. 2, 1884, 37–51 Google Scholar.
39 Schwertschlager, J., Die erste Entstehung der Organismen nach den Philosophen des Altertums und des Mittelalters. Eichstädt, 1885 Google Scholar.
40 Zirkle, C., The beginnings of plant hybridization. Phila., 1935 CrossRefGoogle Scholar. – includes all plant hybridizers before Kölreuter, 1761.
41 Zirkle, C., The early history of the idea of the inheritance of acquired characters and of pangenesis. Tr. Am. Philos. Soc., Phila., 1946 Google Scholar. – In a shorter form also in Am. Naturalist, 1935, 69: 417–45CrossRefGoogle Scholar.
42 Zirkle, C. The discovery of sex-influenced, sex-limited, and sex-linked heredity. Stud. and Essays Hist. Sc., N. Y., 1946, 167–94Google Scholar.
43 Zirkle, C. Some forgotten records of hybridization and sex in plants. J. Hered., 1932, 23: 433 CrossRefGoogle Scholar.
44 Zirkle, C. Natural selection before the Origin of Species. Proc. Am. Philos. Soc., 1941, 84: 71–123 Google Scholar.
45 Roberts, H. F., Plant hybridization before Mendel. Princeton, 1929 CrossRefGoogle Scholar.
46 Vavilov, N. I., The origin, variation, immunity and breeding of cultivated plants. Waltham, Chronica Botanica, vol. 13, 1949–1950 Google Scholar.
47 Lippmann, E. O., Urzeugung und Lebenskraft; zur Geschichte dieser Probleme von den ältesten Zeiten an bis zu den Anfängen des 20. Jahrhunderts. Berl., 1933 Google Scholar.
48 Goebel, K., Wilhelm Hofmeister. Lpz., 1924 Google Scholar.
49 Boeke, J., Leeuwenhoek en Mendel. Haarlem, 1920 Google Scholar.
50 Correns, C., Gregor Mendel's Briefe an Carl Nägeli. Abh. math. phys. Kl. Sächs. Akad. Wiss., 1905, 29: No. 3 Google Scholar.
51 Correns, C. Etwas über Gregor Mendels Leben und Wirken. Naturwissenschaften, 1922, 10: 623 etcCrossRefGoogle Scholar.
52 Iltis, H., Gregor Johann Mendel. Berl., 1924 CrossRefGoogle Scholar.
53 Thomsen, O., Gregor Mendel' s vaerk. Hospitalstidende, 1922, 65: 461–80Google Scholar.
54 Thomsen, O., Fra Mendel til Morgan. Hospitalstidende, 1922, 65: 831–96Google Scholar.
55 Moewes, Vorläufer Mendels. Naturwissenschaften 1913, 12: 541 Google Scholar.
56 Buddenbrock, W., Bilder aus der Geschichte der biologischen Grundprobleme. Berl., 1930 Google Scholar.
57 Baer, K., Nachrichten über Leben und Schriften. St. Peterburg, 1865 Google Scholar.
58 Gedda, L., Studio dei gemelli. Roma, 1951 Google Scholar. – See chapter 6, 231-263.
59 Stur, J., Zur Geschichte der Zeugungsprobleme. Arch. Gesch. Med., 1931, 24: 318 Google Scholar.
60 Brock, , Einige ältere Autoren über die Vererbung erworbener Eigenschaften. Biol. Zbl., 1888, 8: 491 Google Scholar.
61 Lorda Audera, V., Evolución de la teoria celular. Tr. Cátedra hist. crít. méd., Madr., 1934, 2: 367–81Google Scholar.
62 Labus, J., Geschichtlicher Beitrag zu dem Problem der Vererbung von Krankheiten. Freib. i. B., 1929 Google Scholar.
63 Beck, W., Erbpathologische Hinweise in Morgagni's Hauptwerk De sedibus et causis morborum. Virchows Arch., 1939–1940, 305: 521–30Google Scholar.
64 Timoféeff-Ressovsky, N. V., Experimentelle Mutationsforschung in der Vererbungslehre. Dresd., 1937 Google Scholar. – See Cap. 2, 8-12: Historisches und Kritik der lamarckistischen Versuche.
66 Lamy, M., Les applications de la génétique à la médecine. Par., 1944 Google Scholar.
66 Ernst, A., Von den Anfängen der Vererbungs- und Mutationsforschung in der Schweiz. Arch. Julius Klaus Stift., 1941, 16: 208–20Google Scholar.
67 Bloch, B., Die geschichtlichen Grundlagen der Embryologie bis auf Harvey. Abh. Leopold. Carolin. deut. Akad. Naturforsch., 1904, 82 Google Scholar.
68 His, W., Die Theorien der geschlechtlichen Zeugung. Arch. Anthrop., 1870, 4 Google Scholar.
69 Hertwig, O., Dokumente zur Geschichte der Zeugungslehre. 1918 Google Scholar.
70 Hertwig, O. Allgemeine Biologie. (Various editions in 1906, 1909, 1912)Google Scholar. See also his Der Kampf um Kernfragen der Entwicklungs - und Vererbungslehre (1909); also Zeit - und Streitfragen der Biologie (1894, Heft 1); also his Das Werden der Organismen, eine Widerlegung von Darwins Zufallstheorie (1916).
71 Lenin Agricultural Academy, The situation in biological science; proceedings, 07 31-Aug. 7, 1948 Google Scholar; complete stenographic report. N. Y., 1949. See also Huxley, J. Heredity East and West; Lysenko and world science N. Y., Schuman, 1949 Google Scholar.
72 U. S. S. R. Akademia. Institut Genetiki, Protiv reakcionnogo Mendelizma-Morganizma; sbornik statei. Moskva, 1950 Google Scholar.
73 Haldane, J. B. S., New paths in genetics. Lond., 1941 Google Scholar.
74 Raikov, B. E., Russkie biologi-evoljucionisty do Darvina. 2v. Moskva, 1951 Google Scholar.
75 Mainx, E. F., Einführung in die Vererbungslehre. Wien, 1948 CrossRefGoogle Scholar.
76 Hirschfeld, M., Geschlechtskunde. 5v. Stuttg., 1928 Google Scholar. – This was one of my valuable sources for portraits and illustrations.
77 Rostand, J., Les idées nouvelles. Par., 1941 Google Scholar.
78 Rostand, J., Esquisse d'une histoire de la biologie. 3. éd. Par., 1945 Google Scholar.
79 Nordenskiöld, E., Die Geschichte der Biologie. Jena, 1926 Google Scholar. (Also in English, N. Y., 1946).
80 Singer, C., A short history of biology. Oxford, 1931 Google Scholar.
81 Janicki, D. J., Evidence of cytoplasmic inheritance. Bios, 1953, 89–97 Google Scholar.
82 Gottschewski, G., Der heutige Stand der Vererbungswissenschaft. Der Biologe, 1943, 12: 53–64 Google Scholar. – Also source of illustrations.
83 Brix, K., Chromosomen oder plastische Stoffe. Umschau, 1953, 53:234–5Google Scholar.
84 Beirne, C. G., Summary of important names and dates in the history of genetics. Bull. Creighton Univ. Sch. Med., 1948, 5: No. 1, 12–15 Google Scholar.
85 Wardlaw, C. W., Phylogeny and morphogenesis. Lond., 1952 Google Scholar.
86 Praechter, K., Ueberwegs Grundriss der Geschichte der Philosophie des Altertums. Berl., 1909 Google Scholar.
87 Brim, C. J., Medicine in the Bible. N. Y., 1936 Google Scholar.
88 Müller, R. F., Zum Rassengedanken bei der altindischen Ehe. Sudhofs Arch., 1935, 25: 382, etcGoogle Scholar.
89 Dobzhinsky, T., Lysenko progresses backwards. J. Hered., 1953, 20–22 CrossRefGoogle Scholar.
90 Zirkle, C., The involuntary destruction of science in the USSR. Sc. Month., 1953, 76: 277–83Google Scholar.
91 Mayer, C. F., Die Personallehre in der Naturphilosophie von Albertus Magnus. Kyklos, Lpz., 1929, 2: 191–257 Google Scholar.
92 The bibliography of genetics is well covered by the Index-Catalogue up to March 31, 1950. Thereafter, the special bibliographical lists of the genetic journals, especially that of the American Journal of Human Genetics, provide the most complete survey of the subject literature. The Index-Catalogue is available in all countries, in the large medical and university libraries.
93 Hartland, , Primitive paternity. 1909 Google Scholar.
94 Zirkle, O. C, Phila., 1935, 2.
95 Ibid., 3.
96 Cf. Beirne, footnote 84.
97 Hovorka-Kronfeld, . Vergleichende Volksmedizin. Stuttg., 1909, 2: 527–34Google Scholar.
98 Hovorka-Kronfeld, . Vergleichende Volksmedizin. Stuttg., 1909, 2: 527–34Google Scholar.
99 Krumbiegel, cf. footnote 10, 1. c, 255.
100 See footnote 40.
101 Cf. Müller in footnote 88.
102 Cf. Müller in footnote 88.
103 Cf. Müller in footnote 88.
104 Brim cf. footnote 87.
105 Brim cf. footnote 87.
106 Hovorka, cf. footnote 97 (1. c, v. 2: 547).
107 Cf. McCartney, see footnote 29.
108 It was republished by Diels, : Vorsokratiker, Berl., 1912, v. 1, 11 etcGoogle Scholar.
109 ἐξ ἀλλοειδω̃ν Ϛᾦων ὁ ὄνθϱωπος ἐγεννή9η.
110 Cf. Praechter; footnote 86, 1. c, 33. – The same idea was later repeated by Plutarchos (Quaest. symp., lib. 1, 8, 8, 4).
111 Cf. Footnote 108.
112 In his De animalibus, lib. 15, tract. 2, cap. 2, and elsewhere.
113 Cf. Heinze, in Footnote 37; also Zeller in footnote 38.
114 Cf. Footnote 108.
115 Cf. Footnotes 23, 24, 25, 29.
116 Coonen, L. P., Herodotos on biology. Scient. Month., Wash., 1953, 76: 63–70 Google Scholar.
117 Nordenskiöld; see footnote 79.
118 Albertus Magnus writes of Plato's theory: “…quod partes spermatis determinatae habeant virtutes membrorum a quibus deciduntur, et per speciales et partiales virtutes partium spermatis, quaelibet operetur membrum unum ex parte spermatis in qua est”. (De animalibus, lib. 15, tr. 2, cap. 1).
119 McCartney, 1. c., quotes Oppian who had recorded similar practice among the Spartans.
120 This story was originally reported by Heliodorus (Aethiopica, 4), and thereafter repeated by many writers of Antiquity.
121 Plato, . Republic. (Jowett translation. Ed. by J. D. Kaplan., N. Y., 1950)Google Scholar.
122 See footnote 121.
123 For the French translation of this Aristotelian work see Footnote 28.
124 See some descriptions in Singer; cf. Footnote 80, 1. c., 14 etc.
125 Others state that he was born ca 380 B. C. and died 287 B. C.
126 McCartney; see Footnote 29 (1. c., 31).
127 Liber 7, Cap. 10, Historia naturalis: “…In Lepidorum gente tres, intermisso ordine, obducto membram oculo, genitos accepimus. Similes quidem alios avo: et ex geminis quoque alterum patri, alterum matri: annoque post genitum, maiori similem fuisse ut geminum”.
128 Liber 7, Cap. 10, Historia naturalis: “Indubitatum exemplum est Nicaei nobilis pyctae Byzantii geniti, qui adulterio Aethiopis nata matre, nil a ceteris colore differente, ipso avum regeneravit Aethiopem”.
129 Liber 7, Cap. 10, Historia naturalis: “Cogitatio etiam, utriuslibet animum subito transvolans, effingere similitudinem aut miscere existimatur”.
130 Liber 7, Cap. 10, Historia naturalis: “Ideoque plures in homine, quam in ceteris omnibus animalibus differentiae: quoniam velocitas cogitationum, animique celeritas, et ingenii varietas multiformes notas imprimat: cum ceteris animantibus immobiles sint animae, et similes omnibus, singulisque in suo cuique genere”.
131 Liber 7, Cap. 10, Historia naturalis: “…Haec facit ubertas soli, temperies caeli, aquarum abundantia, (si libeat credere) ita sub una ficu turmae condantur equitum”.
132 Lib. 24, cap. 102.
133 Lib. 13, cap. 7: “Adeoque est Veneris intellectus, ut cultus etiam excogitatus sit ab homine, ex maribus flore ac lanugine, interim vero tantum pulvere insperso in feminis”.
134 Lucretius: “Semper enim partus duplici de semine constat”.
135 See Footnote 29; loco citato.
130 De semine, lib. 2, cap. 3. in Kühn's, Med. graecorum opera, 20v. Lpz., 1822–1833 Google Scholar.
137 De theriaca, cap. 11 (vol. 14 in the Kühn edition of Galenos).
138 De foetum formatione Iibellus: “Nam summam in horum conformatione et sapientiam et potentiam video, neque possum existimare, earn quae in foetu est animam… foetum ipsum formare, …neque rursus ab hac opinione in totum possim recedere, quum similitudinem, quam filii habent cum parentibus, specto…” (Vol. 4 of the Kühn edition).
139 The Arab knowledge on generation will be included in one of my early future publications. I have historical evidence contrary to the opinion which is generally held at present by animal breeders as to the origin of artificial insemination.
140 Cf. Zirkle; see Footnote 40 (1. c., 52-3).
141 Ibid., 80.
142 Boetius H., De veterum Scotorum moribus; in Lib. 1.
143 Cf. McCartney; see Footnote 40.
144 Cf. his Opera omnia. Venez., 1591 (De legibus).
145 For the full description of the theories of Albertus Magnus on constitution, complexion, genotype, phenotype, etc. see my study: Die Personallehre in der Naturphilosophie von Albertus Magnus. Kyklos, Lpz., 1929, 2: 191–257 Google Scholar.
146 Lib. 4, De meteor., tr. 1, c. 25.
147 Lib. 15, De animal, tr. 2, c. 1.
148 Lib. 15, De animal, tr. 2, c. 1, 60.
149 Lib. 9, De animal, tr. 1, 6, 62; also lib. 10, tr. 2, c. 1, 39.
150 Lib. 3, De animal., tr. 2, c. 8, 162.
151 De Animal., Lib. 15, tr. 2, c. 8, 125.
152 De Animal., lib. 9, 1, 6. 63.
153 De Animal., lib. 9, tr. 1, c. 6: “In talibus enim similitudinibus et dissimilitudinibus nihil manifestum sensui aut certum secundum rationem tradi potest”.
154 De animal., lib. 5, 2, 1, 57.
155 His chief works are 1) De habitudine causarum, and 2) De reductione effectuum. – Cf. Sarton, . Introduction, 1947, 4: 1504 Google Scholar.
156 Cf. Regimen sanitatis. Ed. A. Sinno. Salerno, 1941. Pt. 4: Physiologica: Cap. 10: Generatio hominis (p. 303), art. 3: “De similitudine natorum cum parentibus. Fructibus ipsa suis quae sit dignoscitur arbor. Saepe solet filius similis esse patri” (p. 304).
157 Cf. Regimen sanitatis. part 7, cap. 4 (p. 396): Morphaea cum lepra, tinea, phthisis, atque podagra. Haec in senibus ut calculus haereditantur”.
158 In his Rariorum aliquot stirpium per Hispaniae observatarum libri (Antw., 1576); cf. Zirkle, Footnote 40 (p. 69).
159 Reprinted in Schurig, Syllepsologia. Cap. 9, Sect. 5: De gravidarum imaginatione, p. 651 (Dresd., 1731):
“Atqui graves tradunt sophi,
quodcumque matres interim
imaginantur fortiter,
dum liberis dature opera
eius latenter, et notas
certas et indelibiles
modoque inexplicabili
in semen ipsum congeri.
Quibus receptis intime
simulque concrescentibus
a mente matris insitam
natus refert imaginem”.
160 Lemnius, L., De occultis naturae miraculis. Antw., 1559. lib. 1, cap. 4Google Scholar.
161 Fracastoro, G., De sympathia et antipathia. Op. omn. Lyon, 1554 Google Scholar,
162 Cardano, , De rerum varietate. Lib. 8, 40. Basel, 1557 Google Scholar.
163 Cardano, , De venenorum differentiis. Basel, 1564 Google Scholar.
164 Aldrovandi, U., Monstrorum historia. Bologna, 1642 Google Scholar.
165 The series of male ancestors, e. g. are: pater-avus-proavus-abavus-atavus-tritavus.
166 Ferrario, G., Florum cultura. Roma, 1633 Google Scholar. – Cf. Zirkle, in Footnote 40 (1. c., 73).
167 Sharrock, R., The History of the Propagation and Improvement of Vegetables by the Con currence of Art and Nature. Oxford, 1660 Google Scholar. – Again cf. Zirkle.
168 Camerarius R. J., The sexu plantarum; this is a letter dated 25 Aug. 1694 and addressed to Michael Bernard Valentin, professor at Giessen University.
169 Malpighi, M., Dissertationes de ovo incubato et de formatione pulii in ovo. (1666 and 1672)Google Scholar.
170 Several of his sons and daughters entered various Catholic religious orders.
171 Scipione, M., La commare oriccoglitrice. Milano, 1618, Lib. 1, Cap. 11, p. 76 etcGoogle Scholar. – Prof. Luigi Gedda was kind to send me a copy of the titlepage and of a few additional pages, of the 11th chapter of this rare Italian work.
172 Sennert, D., De chymicorum cum Aristotelicis consensu et dissensu. Frankf., 1655 Google Scholar. “Et si species phantastica earn vim haberet, mult o plures mutationes in foetibus acciderent”. – Also: “…contingere possunt a phantasia, mediantibus animi pathematis et mot u humoru m ac spirituum”.
173 Gahrliep G. C., Misc. Naturae Curios., Decas 3, an. 7 and 8, Observ. 59, 57.
174 Fallopio, G., Observ. anat., v. 1, 421 (In: Op. omn., Frankf., 1660)Google Scholar.
175 In his Exercitationes de generatione animalium (Lond., 1651)Google Scholar the introduction contains these words: “…omnia… ex ovo progigni… primosque conceptus… ova esse”. But at another place his definition of ovum is 1) any beginning that is capable of living, and 2) anything that has the nature of an egg though it does not look such. Cf. Lippmann, Footnote 47, (l. c., p. 58).
176 De mulierum organis generationi inservientibus. Delft, 1672. Also in his Op. omn., Leiden, 1677Google ScholarPubMed.
177 It was Nicolas Steno who saw the female gonads in viviparous fish, and first called them ovaries. His work: Musculorum descriptio (1667).
178 de Graaf, R.: Op. omn., p. 302 Google Scholar: “communis femellarum testiculorum usus est, ova generare, fovere, et ad maturitatem promovere… potius mulierum ovaria, quam testes appellanda veniunt… illi ad generationem summopere necessarii existant; quod… confirmat ipsa femellarum castratio, quam sterilitas infallibiliter concomitatur”.
179 The true mammalian ovum was discovered by Karl Baer in 1827.
180 See e. g. Kerckring's, Theodor Anthropogeniae iconographia (1671)Google Scholar, in which cases of ovarian pregnancy are reported.
181 See his Miscellanea medico-practica. Ulm, 1698.
182 In his treatise on the Pancreas, Brunner doubted the ovist theory.
183 Among the skeptics were Peyer (1685), Harder (1687) and all the socalled animalculists.
184 It was Pouchet in the 19th century who claimed the glory of discovery for Louis Gardin. I could not check the right of this claim. Others who were mentioned as discoverers of the spermatozoon are Nicolaas Hartsoeker (1656-1725), and Stenon (1638-1687).
185 Leeuwenhoek was also practical breeder of Dutch rabbits and Belgian pigeons. For this reason J. Boeke considers him a precursor of Mendel, But Leeuwenhoek only mentions how rabbits are bred by crossing wild gray males with domestic females of any color, and the paternal gray will dominate in the offspring, cf. his Epistola de generatione ranarum, 26 July, 1683 (In his Op. omn., v. 1, 49).
186 Lamzweerde, J. B., Historia molarum uteri. Leiden, 1868 Google Scholar: “…attamen aeque ac semen masculinutn omnium partium corporis feminini rudimenta et virtutem seminalem complectitur” (p. 72).
187 Herfeld, . De origine morborum. Amst., 1706 Google Scholar: “hoc semen, sive sit animalculum, sive idea, signaturas totius creaturae producendae in sese comprehendens…” (p. 36).
188 Schurig, M. Spermatologia. Frankf. a. M., 1720 Google Scholar: “indeque nos immortales quasi reddere dum redivivos in aliis entibus, nobis similibus…” (p. 152).
189 This treatise was published in his Examen diatribae Willisii de febribus (Lond., 1665), 241-315. The treatise was written by Dermutius de Meara, the father of Edmund, and first published in Dublin about 1621.
190 Ettmüller, M., Op. med., v. 2, Frankf., 1697. See v. 1, 202Google Scholar.
191 Schurig, , Spermatologia historico-medica. Frankf., 1720, 204 Google Scholar.
192 Ettmüller, cf. Footnote 190 (ibid.).
193 Bohne, J., Circulus anatomico-physiologicus. Lpz., 1686 Google Scholar.
194 For details on plant hybridizers before Kölreuter see his work; cf. Footnote 40.
195 For plant hybridizers after Kölreuter see his work; cf. Footnote 45.
196 Kölreuter, J. G., Vorläufige Nachricht von einigen das Geschlecht der Pflanze betreffenden Versuchen und Beobachtungen. Lpz., 1761 CrossRefGoogle Scholar; with 3 supplements (1763, 1764, 1766); republished in Ostwald's Klassiker der exakten Wissenschaften. No. 41. Lpz., 1893. English resume in Roberts, 1. c.
197 Cf. Wardlaw, p. 4. See Footnote 85.
198 His breeding experiments are in the memoir “Esquisse des amusements philosophiques que les oiseaux d'une basse-cour ont à offrir” which appeared in: Art de faire éclore et d'élever en toute saison des oiseaux domestiques de toutes espèces, etc. Par., 1749.
199 Parthenogenesis had been observed in 1667 by Goedart in the female of Orgyia gonostigma (cf. Metamorphosis et historia naturalis insectorum, pars 2, p. 106, 1667; 2. ed. Lond., 1685). – Thereafter it was noted by Leeuwenhoek (1695), Blancard (1696), Albrecht (1706), Réaumur (1741).
200 Theory of the Earth (1785).
201 Vallisnieri, A., Historia generationis. Venez., 1721–1723 Google Scholar.
202 For this literature see the Index-Catalogue of the Surgeon-Generals Library. See also Labu Footnote 62.
203 Prize essay of Chambon. Discours de la transmission des maladies héréditaires. Par., 1749. Other essay writers: Gravier, Rey, and Louis Google Scholar.
204 Such theses from Halle are by Hilbrand (1749), Oppermann (1753); and from Göttingen by Vogel (1767).
205 Vandermonde, , Essai sur la manière de perfectionner l'espèce humaine. Par., 1766 Google Scholar.
206 Vavilov, See Footnote 46. (1. c., p. 3).
207 Knight, T. A., in Tr. Horticult. Soc. London, 1823, 5: 377–80Google Scholar.
208 Herbert, W., Tr. Horticult. Soc. London, 1819, 4: 15–50 Google Scholar.
209 Sageret, A. (1763–1851) Ann. sc. natur., 1826, 8: 294–314 Google Scholar. – Experimented on Cucurbitaceae.
210 Gaertner, C. F., Over de voorteling van bastaard-planten. Haarlem, 1838 Google Scholar.
211 Focke, , Pflanzenmischlinge. Berl., 1881 Google Scholar.
212 Note sur une expérience relative à l'étude de l'hérédité dans les végétaux. Mém. Soc. nat. agr. France (1879)Google Scholar.
213 Nouvelles recherches sur l'hybridité dans les végétaux. Ann. sc. natur., Bot., 4 ser., 1863, 19: 180–203 Google Scholar. – Also his: De l'hybridité comme cause de variabilité dans les végétaux. C. rend. Acad. sc., 1864, 59: 837–45Google Scholar.
214 Baer, K., De ovi mammalium et hominis genesi. Lpz., 1827 Google Scholar. – A very vivid description of his discovery is contained in his autobiography (Nachrichten).
215 Pouchet, F. A., Théorie positive de l'ovulation spontanée et de la fécondation des mammifères et de l'espèce humaine (1847)Google Scholar.
216 Koelliker, R. A., Beiträge zur Kenntnis für Geschlechtsverhältnisse und Samenflüssigkeit wirbelloser Tiere. Berl., 1841 Google Scholar.
217 Balbiani thought that the infusoria are complex organisms.
218 Windle, B. C. A., in: Catholic Encyclopedia, 1913, v. 10: 180 etcGoogle Scholar.
219 Cf. Mendel, G., Bemerkungen zu der graphisch-tabellarischen Uebersicht der meteorologischen Verhältnisse von Brünn. Verh. Naturforsch. Verein. Brünn, 1862, 1:Google Scholar – Also: Meteorologische Beobachtungen aus Mähren und Schlesien für die Jahre 1863-66. Ibid., v. 2-4, 1863-65.
220 Mendel, G., Die Windhose am 13. Okt. 1870 Google Scholar. Ibid., 1870, 9: – This is his last known scientific publication.
221 Makowsky, A., “Die Aufgabe der zukünftigen Naturforschung sei beispielsweise nicht die, zu untersuchen, wozu das Rind seine Hörner habe, sondern wie es zu seinen Hörnern gekommen”. Verh. Naturforsch. Ver. Brünn, (1865) 1866, 5: 10–18 Google Scholar.
222 Another series of hybridization was carried out by Mendel on varieties of Hieracium. Cf. his Ueber einige aus künstlicher Befruchtung gewonnene Hieracium-Bastarden. Verh. Naturforsch. Ver. Brünn, 1869, 8 Google Scholar.
223 Roberts, cf. Footnote 45.
224 As an occasional apology for the neglect of Mendel we also hear references to the lack of means of adequate promulgation of scientific thought in the 19th century. Hirschfeld believes that the advancement of Mendelism would have been different if Darwin or Haeckel had been given a reprint of Mendel's paper. Darwin never read it.
225 Naegeli, C. W., Mechanisch-physiologische Theorie der Abstammungslehre. Münch., 1884 Google Scholar.
226 Naegeli, C. W. Ueber den Einfluss der äusseren Verhältnisse auf die Varietätenbildung im Pflanzenreich. Bot. Mitt., 1865, 2: 103–58Google Scholar.
227 Hoffman, H., Untersuchungen zur Bestimmung des Wertes von Species und Varietät. Glessen, 1869 Google Scholar. – With reference to Mendel.
228 Hertwig, O., Das Problem der Befruchtung und der Isotropie des Eies; eine Theorie der Vererbung (1884)Google Scholar.
229 Nussbaum, M., Ueber Befruchtung. Sitzber. Niederrhein. Ges. Natur. Heilk., 1883 Google Scholar.
230 Nussbaum, M. Ueber die Veränderungen der Geschlechtsprodukte bis zur Eifurchung; ein Beitrag zur Lehre der Vererbung. Arch. mikr. Anat., 1884, 23:Google Scholar
231 Weismann, A., Das Keimplasma. 1892 Google Scholar.
232 Darwin, C., The effects of cross and self fertilisation in the vegetable kingdom (N. Y., 1892)CrossRefGoogle Scholar refers to his own hybridization experiments, also to those with the common pea (Pisum sativum). In this part he remembers of Andrew Knight, and Mr Laxton too, but he does not mention Mendel.
233 Haeckel, E., Anthropogenie. 1874 Google Scholar.
234 Galton, F., Hereditary genius, 1869 CrossRefGoogle Scholar. – Also: Natural inheritance, 1889.
235 Richet, C., Bull. Soc. anthrop., 1884, 3. ser., 7: 734–40Google Scholar.
236 Weismann, , Ueber die Hypothese einer Vererbung von Verletzungen. Tagebl. Versamml. deut. Naturforsch. (1888) 1889, 61: pt. 2, 45-57Google Scholar.
237 Cf. his article in Arch. Surg., Lond., 1895, 6: 125–30Google Scholar. Also Ophth. Rev., Lond., 1881n1882, 1: p. 2 Google Scholar; passim.
238 Sedgwick, W., On sexual limitation in hereditary system. Brit. Med. Chir. Rev., 1861, 27: 477 Google Scholar. See also Ibid., 1863, 31: 445.
239 De Vries, H., Das Spaltungsgesetz der Bastarde. Ber. Deut. bot. Ges., 1900, 18: 83–90 (14 03)Google Scholar.
249 Correns C. G., Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Ibid., 158-168 (22 Apr.).
241 Tschermak, E., Ueber künstliche Kreuzung bei Pisum sativum. Ibid., 232-9 (received June 2).
242 For the German article see Footnote 239. The French was published on 26 March in C. rend. Acad. sc., Par., 1900, 130: 845–7Google Scholar.
243 De Vries, , Erbungleiche Kreuzungen. Ber. Deut. bot. Ges., 1900, 18: 435–43Google Scholar.
244 Bateson, W., Hybridization and cross breeding as a method of scientific investigation. J. R. Horticuit. Soc., Lond., 1899, 24: 59–66 Google Scholar.
245 Bateson W., Problems of heredity. Ibid., 1900, 25: 54-61.
246 Bateson, W., Mendel's principles of heredity; a defence. Cambr., 1902 Google Scholar. – This contains a modified translation. The original translation was made by Mr C. T. Druery. Bateson later (1909) published a larger book on Mendel.
247 Bateson, W., Mendel's principles of heredity. 1913 Google Scholar.
248 Henking, H., in Zschr. wiss. Zool., 1891, 51 Google Scholar.
249 McClung, , Biol. Bull., 1902, 3 Google Scholar.
250 Wilson, E. B., J. Exp. Tool., 1906, 3 Google Scholar.
251 Spencer, H., The principles of biology. Lond., 1864 Google Scholar.
252 Sutton, W. S., Biol. Bull., 1902, 4: 230 CrossRefGoogle Scholar.
253 Johannsen W. L., Elemente der exakten Erblichkeitslehre (many eds.).
254 Johannsen, W. L., Om arvelighed i samfund of rene linier. (1903)Google Scholar.
255 Morgan, T. H., American Naturalist, 1910, 44: 449–96CrossRefGoogle Scholar.
256 Sturtevant, ., J. Exp. Zool., 1913, 14: 43–59 CrossRefGoogle Scholar.
257 Castle, W. E., Proc. Nat. Acad. Sc. U. S., 1919, 5: 25–32 CrossRefGoogle Scholar.
258 Morgan, T. H., J. Exp. Zool., 1911, 11: 365–414 CrossRefGoogle Scholar.
259 Hertwig, O., Arch. mikr. Anat., 1911, 77: Abt. 2, 97–164 CrossRefGoogle Scholar (on the radium disease of germ cells).
260 For the details of this research see Timofeeff-Ressovsky, Footnote 64. I based the paragraphs on history of mutation research upon the second chapter of his work.
261 Muller, H. J., Chromosome breakage by x-rays. Ann. Rec., Phila., 1924, 29: 150 Google Scholar.
262 Muller, H. J., Artificial transmutation of the gene. Science, 1927, 66:CrossRefGoogle ScholarPubMed
263 Lotsy, J. P., Evolution by means of hybridization's. Gravenhage, 1916 Google Scholar.
264 Lotsy J. P., 157, etc.
265 See especially Groeber, J. (Arch. Rassenb., 1904, 1: 664–81)Google Scholar. – Also Sommer, K. R.: Familienforschung und Vererbungslehre. Lpz., 1907 Google Scholar. – Also Crzellitzer, A. (Sex Probleme, 1912, 8: 221–43)Google Scholar.
266 Martius, F., Krankheitsanlage und Vererbung. Lpz., 1905 Google Scholar. Also his: Konstitution und Vererbung in ihren Beziehungen zur Pathologie. Berl., 1914 Google Scholar.
267 Cf. Am. J. M. Sc., 1902, 123: 996–1008 CrossRefGoogle Scholar.
268 Cf. Proc. Soc Exp. Biol., 1920, 18: 111–5Google Scholar.
269 Cf. Arch. Rassenb., 1925, 17: 47–61 Google Scholar.
270 Baitsel, , Human biology (1950) 444–445 Google Scholar.
271 Cf. Haldane, J. B. S. Heredity and politics. Lond., 1938 Google Scholar.
272 On Galtonism and Gobineauism see also Hirschfeld, 1. c, v. 2, 647-9.
273 Timirjazev, K. A., Ch. Darwin i ego uchenie (1. ed., 1882; 8. ed., 1924)Google Scholar. He also wrote three articles on Darwin (1864).
274 Lysenko, T. D., Agrobiologia. 1948 Google Scholar.
275 Zirkle, , Scient. Month., 1953, 06 Google Scholar.
276 Cf. Huxley. See Footnote 71.
277 Cf. Huxley. p. 18.
278 Cf. Gruber, G. B., Einführung in Geschichte und Geist der Medizin. 4. Aufl., Stuttg., 1952, 87 Google Scholar.
279 On the other hand, McCartney (cf. Footnote 29) mentions that an anonymous magazin article referred to the elongation of the earlobes of Masailand women and of the neck of a certain tribe's women in Africa where the large ear lobes and the brass neckrings produced an artificial elongation that has become hereditary since a “good purpose” is served by these acquired characters.
280 Dobzhansky, T., Lysenko progresses backwards. J. Hered., 1953, 20–22 CrossRefGoogle Scholar. – The work of Lysenko is entitled: New in the science of biological species (Novoe v nauke o biologicheskom vide), Moskva, 1952.
281 Cf. Amer. Naturalist, 1945, 79: (289 etc.)CrossRefGoogle Scholar.
282 Schrodinger, . What is life. Cambr., 1944 Google Scholar.
283 Cunningham, J., Arch. Entw. mech., 1908, 26: 372–428 Google Scholar.
284 Cf. Proc. Cambridge Philos. Soc., 1909, 15: 137 etcGoogle Scholar.
286 Cf. Biochemical aspects of genetics, a symposium (1949) Cambridge, 1950Google ScholarPubMed.
287 Wright, . Amer. Naturalist, 1945, 79: 289, etc.CrossRefGoogle Scholar – See also Wardlaw in Footnote 85.
287 Wettstein, F. V., Ueber plasmatische Vererbung. Nachr. Ges. Wiss. Göttingen, 68: 276 Google Scholar.
288 Wilson, , Cell. N. Y. 1925 Google Scholar.
289 Zimmermann, , Cold Spring Harbor Sympos., 1942, 10: 152 etcCrossRefGoogle Scholar.
290 Goldschmidt, R., Physiological genetics. N. Y., 1938 Google Scholar.
291 Cf. Wardlaw, 1. c, 139. See Footnote 85.
292 Biffen, , J. Agric. Sc., 1907, 2: 109–128 CrossRefGoogle Scholar.
293 Nilsson-Ehle, , Lundss Univ. arssk., n. f., afd. 2, 7, No. 6: 57–82 Google Scholar.
294 See Gedda, L., Studio dei gemelli. Roma, 1951, Cap. 6, 231–63Google Scholar.
295 Pearl, R., Modes of research in genetics. N. Y., 1915 CrossRefGoogle Scholar.
296 Jollos, V., Zschr. indukt. Abstamm., 1921, 24: 77–97 Google Scholar.
297 Lenz, , In: Baur's Grundriss, etc. 2. Aufl., 1923, 1: 327–69Google Scholar.
298 Cf. Lamy, in Footnote 65 (1. c., 141 etc.).
299 Fisher, R. A., The genetical basis of natural selection. 1930 Google Scholar.
300 Hutt, F. B., etc. Science, 1953, 117: 695–7, 06 19CrossRefGoogle Scholar.