Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T20:24:13.890Z Has data issue: false hasContentIssue false

Genetic diversity analysis of the mitochondrial D-loop of Nigerian indigenous sheep

Published online by Cambridge University Press:  18 June 2012

B.O. Agaviezor
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria Department of Animal Science and Fisheries, University of Port Harcourt, Port Harcourt, Nigeria Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
M.A. Adefenwa
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
S.O. Peters
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
A. Yakubu
Affiliation:
Department of Animal Science, Nasarawa State University, Keffi, Shabu-Lafia Campus, Lafia, Nigeria
O.A. Adebambo
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
M.O. Ozoje
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
C.O.N. Ikeobi
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
B.M. Ilori
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
M. Wheto
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
O.O. Ajayi
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
S.A. Amusan
Affiliation:
Department of Animal Breeding and Genetics, Federal University of Technology, Abeokuta, Nigeria, Nigeria
M. Okpeku
Affiliation:
Department of Livestock Production, Niger Delta University, Amasomma, Bayelsa State, Nigeria
M. De Donato
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
I.G. Imumorin*
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
*
Correspondence to: Dr Ikhide G. Imumorin, Department of Animal Science, Cornell University, 267 Morrison Hall, Ithaca, NY 14853, USA. email: igi2@cornell.edu
Get access

Summary

Indigenous livestock resources are strategic in the socio-economics of rural agricultural systems to ensure food security in resource-poor countries. Therefore, better understanding of genetic variation holds the key to future utilization through conservation. We report the first analysis of genetic diversity of Nigerian sheep based on the D-loop region of the Ovis aries mitochondrial genome using 1 179 bases between sites 15 437 and 16 616 base pairs. A sample of 290 animals made up of Balami, West African Dwarf (WAD), Uda and Yankasa breeds were randomly collected from across Nigeria. Ninety-six haplotypes were observed with a high mean haplotype diversity of 0.899 ± 0.148. Gene diversity was highest in Uda (0.921 ± 0.021) and lowest in WAD (0.852 ± 0.061). Population specific FST indices varied from 0.00133 in Uda to 0.00335 in WAD. Yankasa had the highest number of polymorphic sites (201), while the least was in Uda (96). Analysis of molecular variance revealed that 0.23 percent of the variation is found among populations compared with 99.77 percent variation found within populations. The phylogenetic tree indicates that the mitochondrial lineages of these sheep breeds originated from a common source consistent with first divergence of Yankasa followed by WAD, while Balami and Uda remain more closely related. These results suggest that evolutionary divergence of Nigerian sheep breeds based on mitochondrial DNA D-loop sequence may be coincident with geographical distribution in Nigeria and suggest significant interbreeding. This could have implications for managing improvement and conservation strategies and long-term conservation of Nigerian indigenous sheep.

Résumé

Les ressources des animaux d'élevage indigènes représentent une valeur stratégique dans la socio-économie des systèmes agricoles ruraux qui permettrait de garantir la sécurité alimentaire dans les pays pauvres en ressources. Par conséquent, l'utilisation future de ces ressources par le biais de la conservation dépend d'une meilleure compréhension de la variation génétique. Nous signalons la première analyse de la diversité génétique des moutons nigériens basée sur la région de la boucle D du génome mitochondrial d'Ovis aries en utilisant 1 179 bases entre les sites 15 437 et 16 616 paires de bases. Des échantillons de 290 animaux provenant des races Balami, West African Dwarf, Uda et Yankasa ont été collectés au hasard dans tout le Nigéria. On a observé 96 haplotypes avec une moyenne élevée de diversité d'haplotype de 0,899 ± 0,148. On a relevé la diversité génétique la plus élevée chez les moutons Uda (0,921 ± 0,021) et la plus faible chez les moutons West African Dwarf (0,852 ± 0,061). Les indices spécifiques de population FST variaient entre 0,00133 pour les Uda et 0,00335 pour les West African Dwarf. Les moutons Yankasa présentaient le nombre le plus élevé de sites polymorphiques (201) tandis que le plus bas a été repéré chez les Uda (96). L'analyse de la variance moléculaire a indiqué que 0,23 pour cent de la variation se trouve parmi les populations tandis que 99,7 pour cent se situe au sein des populations. L'arbre phylogénétique indique que les lignées mitochondriales de ces races de moutons proviennent d'une source commune cohérente avec la première divergence des Yankasa suivie par les West African Dwarf, tandis que les races Balami et Uda restent plus étroitement apparentées. Ces résultats semblent indiquer que la divergence évolutive des races de moutons indigènes basée sur la séquence de la boucle D d'ADN mitochondrial pourrait coïncider avec la distribution géographique au Nigéria et suggérer un croisement considérable. Cette conclusion pourrait avoir des retombées dans la gestion des stratégies d'amélioration et de conservation et dans la conservation à long terme des moutons indigènes du Nigéria.

Resumen

Los recursos ganaderos autóctonos son de carácter estratégico en los aspectos socioeconómicos de los sistemas agrícolas para garantizar la seguridad alimentaria en los países de escasos recursos. Por lo tanto, conocer mejor la importancia de la variabilidad genética es vital para su futura utilización, por medio de la conservación. Se presenta el primer análisis de la diversidad genética en ovejas de Nigeria basado en la región de control (D-loop) del Ovis aries del genoma mitocondrial, utilizando 1.179 bases entre las posiciones 15.437 y 16.616 de pares de bases. Una muestra de 290 animales, compuesta por las razas Balami, West African Dwarf (WAD), Uda y Yankasa, fue tomada al azar de toda Nigeria. Se observaron noventa y seis (96) haplotipos, con una alta diversidad media en cuanto a éstos de 0,899 ± 0,148. La diversidad genética fue mayor en la raza Uda (0,921 ± 0,021) y menor en la raza WAD (0,852 ± 0,061). Los índices de población específicos FST variaron de 0.00133 en la raza Uda a 0,00335 en la raza WAD. La raza Yankasa presentó el mayor número de posiciones polimórficas (201), mientras que el menor lo mostró la raza Uda (96). Análisis de la varianza molecular reveló que 0,23% de la variación se encuentra entre las poblaciones, en comparación con el 99,77% de variación que se encuentra dentro de las poblaciones. El árbol filogenético indica que los linajes mitocondriales de las razas ovinas partieron de un origen común en conformidad con la primera divergencia de la raza Yankasa, seguida por WAD, mientras que las razas Balami y Uda se encuentran más estrechamente relacionadas. Estos resultados demuestran que la divergencia evolutiva de las poblaciones ovinas de Nigeria, basados en el ADN mitocondrial de la región control, puede coincidir con la distribución geográfica en Nigeria e indican una tasa importante de cruzamiento entre ellas. Esto podría tener ventajas desde el punto de vista de la gestión de la mejora y las estrategias de conservación y preservación a largo plazo de las ovejas autóctonas de Nigeria.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullahi, M. 2002. Opening address for the Small Ruminant Training Workshop Held at the National Animal Production Research Institute, Ahmadu Bello University, Shika, Nigeria. Small Ruminant Production Training Workshop. 13–18 January, 2002. p 9.Google Scholar
Adebambo, O.A., Williams, J.L., Blott, S. & Urquhart, B. 2004. Genetic relationships between Native Sheep breeds in Nigeria based on microsatellite DNA polymorphisms. Anim. Genet. Resour. Inform., 34: 2739.Google Scholar
Agaviezor, B.O., Adefenwa, M.A., Peters, S.O., Yakubu, A., Adebambo, O.A., Ozoje, M.O., Ikeobi, C.O.N., Ilori, B.M., Wheto, M., Ajayi, O.O., Amusan, S.A., Ekundayo, J.O., Okpeku, M., Onasanya, G.O., De Donato, M. & Imumorin, I.G.Morphological and molecular genetic diversity of Nigerian sheep. Journal of Animal Science and Biotechnology (Accepted).Google Scholar
Ajmone-Marsan, P. & The GLOBALDIV Consortium. 2010. A global view of livestock biodiversity and conservation–GLOBALDIV. Anim. Genet., 41(Suppl. 1): 15.CrossRefGoogle ScholarPubMed
Bandelt, H.J., Forster, P. & Rohl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 3748.CrossRefGoogle ScholarPubMed
Benjelloun, B., Pompanon, F., Ben Bati, M., Chentouf, M., Ibnelbachyr, M., El Amiri, B., Rioux, D., Boulanouar, B. & Taberlet, P. 2011. Mitochondrial DNA polymorphism in Morrocan goats. Small Ruminant Res., doi:10.1016/j.smallrumres.2011.03.041.CrossRefGoogle Scholar
Chessa, B., Pereira, F., Arnaud, F., Amorim, A., Goyache, F., Mainland, I., Kao, R.R., Pemberton, J.M., Beraldi, D., Stear, M., Alberti, A., Pittau, M., Banabazi, M.H., Kazwala, R., Zhang, Y.-P., Arranz, J.J., Ali, B.A., Wang, Z., Uzun, M., Dione, M., Olsaker, I., Holm, L.-E., Saarma, U., Ahmad, S., Marzanov, N., Eythorsdottir, E., Holland, M., Ajmone-Marsan, P., Bruford, M.W., Kantanen, J., Spencer, T.E. & Palmarini, M.E. 2009. Revealing the history of sheep domestication using retrovirus integrations. Science, 324: 532536.CrossRefGoogle ScholarPubMed
Cinkulov, M., Popovski, Z, Porcu, K, Tanaskovska, B., Hodzić, A., Bytyqi, H., Mehmeti, H., Margeta, V., Djedović, R., Hoda, A., Trailović, R., Brka, M., Marković, B., Vazić, B., Vegara, M., Olsaker, I. & Kantanen, J. 2008. Genetic diversity and structure of the West Balkan Pramenka sheep types as revealed by microsatellite and mitochondrial DNA analysis. J. Anim. Breed. Genet., 125: 417426.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform., Online 1: 4750.CrossRefGoogle Scholar
FAO, 2007. Secondary guidelines for development of national farm animal genetic resources management plans. Measurement of Domestic Animal Diversity (MoDAD): Original Working Group Report (available at http://dad.fao.org./en/refer/library/guideline/workgrp.pdf).Google Scholar
FAO, 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. Rome (available at http://www.fao.org/docrep/014/i2413e/i2413e00.htm).Google Scholar
Gizaw, S., Komen, H., Hanote, O., van Arendonk, J.A.M., Kemp, S., Aynalem, Haile, Mwai, O. & Dessie, T. 2011. Characterization and conservation of indigenous sheep genetic resources: a practical framework for developing countries. ILRI Research Report No. 27. Nairobi, Kenya, ILRI.Google Scholar
Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, M.A., Scherf, B., Pilling, D., Negrini, R., Jianlin, H., Finlay, E.K., Groeneveld, E., Weigend, S. & the GlobalDiv Consortium. 2010. Genetic diversity in livestock breeds. Anim. Genet., 41(Suppl. 1): 631.CrossRefGoogle Scholar
Hiendleder, S., Lewalski, H., Wassmuth, R., & Janke, A. 1998. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J. Mol. Evol., 47: 441448.CrossRefGoogle ScholarPubMed
Kantanen, J., Vilkki, J., Elo, K. & Maki-Tanila, A. 1995. Random amplified polymorphic DNA in cattle and sheep: application for detecting genetic variation. Anim. Genet., 26: 315320.CrossRefGoogle ScholarPubMed
Kathiravan, P., Kataria, R.S., Mishra, B.P., Dubey, P.K., Sadana, D.K. & Joshi, B.K. 2011. Population structure and phylogeography of Toda buffalo in Nilgiris throw light on possible origin of aboriginal Toda tribe of South India. J. Anim. Breed. Genet., 128: 295304.CrossRefGoogle ScholarPubMed
Kumar, S., Tamura, K. & Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform., 5: 150163.CrossRefGoogle ScholarPubMed
Luikart, G. & Allendorf, F.W. 1996. Mitochondrial DNA variation in rocky mountain bighorn sheep (Ovis Canadensis canadensis). J. Mammal., 77: 109123.CrossRefGoogle Scholar
Mohammadhashemi, A., Pirany, N., Roz, B.B.K. & Nassiry, M. 2010. Determination of mitochondrial D-loop sequence of Iranian Moghani sheep breed. Adv. Anim. Biosci., 1: 310310. doi:10.1017/S204047001000453x.CrossRefGoogle Scholar
Naderi, S., Rezaei, H.-R., Taberlet, P., Zundel, S., Rafat, S.-A., Naghash, H.-R., El-Barody, M.A.A., Ertugru, O. & Pompanon, F. 2007. Large-scale DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS ONE 2(10): e1012. doi:10.1371/journal.pone.0001012.CrossRefGoogle ScholarPubMed
Nei, M. & Kumar, S. 2000. Molecular evolution and phylogenetics. New York, Oxford University Press.CrossRefGoogle Scholar
Pariset, L., Mariotti, M., Gargani, M., Joost, S., Negrini, R., Perez, T., Bruford, M., Marsan, P.A. and Valentini, A. 2011. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). TheScientificWorldJOURNAL, 11: 16411659.CrossRefGoogle ScholarPubMed
Qing, G.R., Ping, W.L., Hong, C. & Tsunodak, K. 2009. Genetic differentiation among four Chinese sheep breeds. J. Anim. Veter. Adv., 8(7): 13811384.Google Scholar
Rozas, J., Sánchez-del-Barrio, J.C., Messeguer, X., & Rozas, R. 2003. DnaSP: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 24962497.CrossRefGoogle ScholarPubMed
Suleiman, Y., Wu, C. & Zhao, C. 2011. Phylogeny of 19 indigenous sheep populations in northwestern China inferred from mitochondrial DNA control region. Asian J. Anim. Veter. Adv., 6: 7179.CrossRefGoogle Scholar
Taberlet, P., Coissac, E., Pansu, J. & Pompanon, F. 2011. Conservation genetics of cattle, sheep, and goats. C. R. Biol., 334: 247254.CrossRefGoogle ScholarPubMed
Tanaka, K., Takizawa, T., Murakoshi, H., Dorji, T., Nyunt, M.M., Maeda, Y., Yamamoto, Y. & Namikawa, T. 2011. Molecular phylogeny and diversity of Myanmar and Bhutan mithun based on mtDNA sequences. Anim. Sci. J., 82: 5256.CrossRefGoogle ScholarPubMed
Tserenbataa, T., Ramey, R.R., Ryder, O.A., Quinn, T.W. & Reading, R.P. 2004. A population genetic comparison of argali sheep (Ovis ammon) in Mongolia using the ND5 gene of mitochondrial DNA: implications for conservation. Mol. Ecol., 13: 13331339.CrossRefGoogle ScholarPubMed
Vacca, G.M., Daga, C., Pazzola, M., Carcangiu, V., Dettori, M.L. & Cozzi, M.C. 2010. D-loop sequence mitochondrial DNA variability of Sarda goat and other goat breeds and populations reared in the Mediterranean area. J. Anim. Breed. Genet., 127: 352360.CrossRefGoogle ScholarPubMed
Wang, X., Cao, L., Liu, Z. & Fang, S. 2006. Mitochondrial DNA variation and matrilineal structure in blue sheep populations of Helan Mountain, China. Can. J. Zool., 84: 14311439.CrossRefGoogle Scholar
Zhao, Y., Zhao, E., Zhang, N. & Duan, C. 2011. Mitochondrial DNA diversity, origin, and phylogenic relationships of three Chinese large-fat-tailed sheep breeds. Trop. Anim. Health Prod., 43: 14051410.CrossRefGoogle ScholarPubMed