Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T01:20:35.266Z Has data issue: false hasContentIssue false

Genetic diversity and sustainable management of animal genetic resources, globally

Published online by Cambridge University Press:  01 August 2011

E. Fimland
Affiliation:
Nordic Gene Bank Farm Animals, Department of Animal and Aquacultural Sciences, P.O. Box 5003, 1432 Aas, Norway
Get access

Summary

General trends of development imply an increasing uniformity of animal genetic resources, caused by the loss of endangered breeds and increased inbreeding within commercial breeding populations. The implications of these trends point to a reduction in the genetic diversity of the animal genetic resources, which may reduce possibilities for utilization in the future, while at the same time a dramatic change in environmental production conditions can be observed. In order to change this developmental trend, sustainable management of animal genetic resources must be promoted globally. The fundamental issues for such sustainable management are illustrated by the principles given in the Convention on Biological Diversity. In order to accomplish sustainable management of these resources, the following actions must be taken:

• The development of policies to promote national and global responsibility for maintaining genetic diversity, which will not be addressed within this paper

• The development of knowledge as a fundamental concept to impose sustainable management principles on these animal genetic resources. This will be dealt with in this paper. A more complete description of these features can be found in Woolliams et al, 2005 in (Sustainable Management of Animal Genetic Resources).

Résumé

Les tendances générales de développement actuel prévoient une uniformité des ressources génétiques animales, due, d'une part, à la perte des espèces menacées d'extinction et d'autre part, au développement des croisements génétiques au sein des populations commercialisées pour l'élevage. Ceci mène à une restriction de la diversité génétique des ressources animales, ce qui pourrait compromettre leur utilisation possible à l'avenir. A côté de cela, les conditions environnementales de production sont également radicalement changeantes. Pour pouvoir faire évoluer ce mode de développement de manière positive, il est plus que nécessaire d'imposer un management durable des ressources génétiques animales, à l'échelle mondiale. Le fondement d'un tel développement durable est mis en avant par les principes cités par la Convention sur la Biodiversité. Pour atteindre un management durable de ces ressources, certaines conditions sont nécessaires:

• Une responsabilité à la fois nationale et internationale pour conserver la diversité génétique - règles, qui ne seront pas traitées dans ce document

• Développer les connaissances, fondement de base pour imposer le développement durable de ces ressources génétiques animales; sujet qui sera débattu ici. Une plus complète description de ce dispositif peut être consultée dans Woolliams et al., 2005 (Sustainable Management of Animal Genetic Resources).

Resumen

Las tendencias generales de desarrollo actualmente preven una uniformidad de los recursos zoogenéticos debido, por una parte a la pérdida de especies en vía de extinción y por otra al desarrollo de cruces genéticos dentro de las poblaciones para comercialización. Esto nos lleva a una restricción de la diversidad genética de los recursos animales, lo que podría comprometer su utilización en el futuro. Al mismo tiempo las condiciones ambientales de producción también están cambiando radicalmente. Para permitir la evolución de este tipo de desarrollo de manera positiva, será necesario imponer una gestión sostenible de los recursos zoogenéticos a escala mundial. La base de este desarrollo sostenible se recoge dentro de los principios estipulados en la Convención para la Biodiversidad. Para alcanzar una gestión sosteni de estos recursos son necesarias ciertas condiciones:

• Responsabilidad tanto nacional como internacional para la conservación de la diversidad genética - normas que no tratarem en este documento.

• Desarrollar los conocimientos y los fundamen de base para imponer un desarrollo sostenible de estos recursos zoogenéticos, este tema será tratado en el artículo. Una descripción más detallada de este dispositivo se puede consult en Wooliams J.A. et al. 2005. Sustainable Management of Animal Genetic Resources. Nordic Gene Bank Farm Animals ISBN 92-893 1089-8.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Avendano, S., Woolliams, J.A. & Villanueva, B.. 2004. Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding. Genet. Res., Camb. 83, 5564.CrossRefGoogle ScholarPubMed
Bulmer, M.G. 1971. The effect of selection on genetic variability. The American Naturalist 105, 201211.CrossRefGoogle Scholar
Chesnais, , Fairfull, W., Gibson, J.P., Kennedy, B.W. & Burnside, E.B.. 1994. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, pp. 127134.Google Scholar
Cunningham, E.P. (Ed.). 2003. After BSE - A Future for the European Livestock Sector. EAAP publication no. 108.CrossRefGoogle Scholar
Drucker, A.G. 2001. The Economic Valuation of AnGR: Importance, Application and Practice. In: Proceedings of the workshop held in Mbabane, Swaziland, 7-11 May 2001.Google Scholar
Fimland, E. 1979. Zeitschrift für Tierzüchtung und Züchtungsbiologie 96, 120134CrossRefGoogle Scholar
Henderson, C.R. 1976. A simple method for computing the inverse of a numerator matrix used in prediction of breeding values. Biometrics 32, 6984.CrossRefGoogle Scholar
Heringstad, B., Rekaya, R., Gianola, D., Klemetsdal, G. & Weigel, K.A.. 2003. Genetic change for clinical mastitis in norwegian cattle: a threshold model analysis. J. Dairy Sci. 86: 369375.CrossRefGoogle ScholarPubMed
Hill, W.G. 1974. Prediction and evaluation of response to selection with overlapping generations. Animal Production 18:117139.Google Scholar
Simm, , Villanueva, B., Sinclair, K.D. & Townsend, S. (Eds). 2004. Farm Animal Genetic Resources., BSAS Publication No. 30. Nottingham University Press, Nottingham NG11, 0AX. ISBN 1-897676-15-8, SB, pp. 345.Google Scholar
Thompson, R. 1977. The estimation of heritability with unbalanced data: ii. data available on more than two generations. Biometrics, Vol. 33, no. 3, pp. 497504.CrossRefGoogle Scholar
Woolliams, J.A. & Thompson, R. 1994. In: Proceedings of the 5th World Congress on Genetics applied to Livestock Production, Guekph, vol. 19.Google Scholar
Woolliams, J.A. 2006. Sustainable Livestock Breeding - Food Security and Safety. “Nordic GENEresources”, ISBN 92-893-1153-3, www.nordgen.org/publikasjoner/nordiskegenressurser.htmGoogle Scholar
Woolliams, J., Berg, P., Maki-Tanila, A., Meuwissen, T., Fimland, E.. 2005. Sustainable Management of Animal Genetic Resources- As: Nordic Gene Bank Farm Animals. ISBN 92-893-1089-8, pp. 95.Google Scholar
Wray, N.R. & Thompson, R. 1990 Prediction of rates of inbreeding in selected populations. Genet. Res. 55, 4154.CrossRefGoogle ScholarPubMed