Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T04:42:34.791Z Has data issue: false hasContentIssue false

Impacts of genetic drift and restricted gene flow in indigenous cattle breeds: evidence from the Jutland breed

Published online by Cambridge University Press:  18 June 2012

A. Brüniche-Olsen*
Affiliation:
Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
P. Gravlund
Affiliation:
Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
E.D. Lorenzen
Affiliation:
Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen Ø, Denmark
*
Correspondence to: A. Brüniche-Olsen, University of Tasmania, Hobart, Australia. email: annabo@utas.edu.au
Get access

Summary

Indigenous cattle breeds represent a unique genetic resource, and understanding their variability, population structure and breeding units is important for their sustainable conservation. The endangered Jutland breed was widespread in Denmark in the eighteenth century, but decreased in population size following the introduction of modern farming. We investigated the impact of recent anthropogenic fragmentation of the breed by analysing 737-bp mitochondrial DNA and 23 microsatellites in 207 individuals. The results revealed the Jutland breed as a unique genetic entity with high levels of genetic diversity, and only limited introgression from other black-pied breeds. The data reflected the impacts of fragmentation and restricted gene flow in breeds with small segregated herds, and revealed the rapid differentiation of herds resulting from genetic drift. The application of a management strategy that conserves diversity and minimizes increase in inbreeding is important for the future conservation of the Jutland breed and other indigenous cattle breeds.

Résumé

Les races de bétails indigènes representent une ressource génétique unique. Comprendre la variabilité génétique, la structure de la population et unités d'amelioration génétique est essentiel. La race Jutland, menacée aujourd'hui, était très répandue au Danemark durant le 18eme siècle avant de voir sa population décroitre suite a l'avènement des méthodes modernes d'agriculture. Nous avons etudiés l'impact de la fragmentation anthropogénique de cette race en analysant l'ADN mitochondrial (737-bp) et 23 microsatellites dans 207 individus. Les résultats dévoilent La race Jutland comme une entité génétique unique présentant une grande diversité, et montrent seulement une introgression limité d'autres races tachetés noires. Les données reflètent les impacts de la fragmentation et un flux de genes limite au sein des espèces avec de petits troupeaux issus d'une ségrégation et revèlent une differentiation rapide des troupeaux résultant de la dérive génétique. La mise en place d'une stratégie de management qui conserve la diversité et qui empêche les croisements est importante pour la conservation future de la race Jutland et des autres races de bétails indigènes.

Resumen

Las razas indígenas del ganado representan un fuente única de recurso genético, la comprensión de su variabilidad, estructura de población, y de sus unidades de cría son importantes factores para sus conservación sostenible. La raza de ganado en peligro de extinción de Jutlandia se encontraba muy dispersa en Dinamarca en el siglo XVIII, pero disminuyó e tamaño tras la introducción de la agricultura moderna. En este estudio, se investigó el impacto antropogénico en la fragmentación de la raza usando el análisis de 737 pares de bases del ADN mitocondrial y 23 microsatélites en 207 animales. Los resultados muestran que la raza en Jutlandia contiene una entidad genética única con altos niveles de diversidad genética, y limitada solamente por la introgresión de otras razas comunes de ganado. Los datos reflejan el impacto de la fragmentación y el flujo genético en razas restringidas y separadas en pequeños rebaños; y pone en manifiesto la rápida diferenciación de los rebaños como resultado de la deriva genética. La aplicación de una estrategia de gestión que conserve la diversidad y evite la mezcla de razas es importante para la futura conservación de la raza de Jutlandia y otras razas de ganado indígenas.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S., de Bruijn, M.H.L., Coulson, A.R., Eperon, I.C., Sanger, F. & Young, I.G. 1982. Complete sequence of bovine mitochondrial DNA, conserved features of the mammalian mitochondrial genome. Mol. Biol., 156: 683717.CrossRefGoogle ScholarPubMed
Bandelt, H.J., Foster, P. & Röhl, A. 1999. Median–joining network for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 3748.CrossRefGoogle Scholar
Cymbron, T., Loftus, R.T., Malheiro, M.I. & Bradley, D.G. 1999. Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proc. R. Soc. Lond., 266: 597603.CrossRefGoogle ScholarPubMed
Dalsgaard, R. 2001. Internationalt focus paa (available at http://www.maskinbladet.dk/artikel/international-fokus-pa; accessed 2 November 2010).Google Scholar
Dalvit, C., Marchi, M.D., Zotto, R.D., Zanetti, E., Meuwissen, T. & Cassandro, M. 2008. Genetic characterization of the Burlina cattle breed using microsatellite markers. J. Anim. Breed. Genet., 125: 137144.CrossRefGoogle Scholar
Danish Ministry of Food, Fisheries and Agriculture. 2008. Status for de truede racer (available at http://www.netpublikationer.dk/FVM/978-87-7083-200-7/kap01.htm; accessed 4 March 2008).Google Scholar
Danish Ministry of Food, Fisheries and Agriculture. 2010. Det jyske kvæg (available at http://pdir.fvm.dk/Det_Jyske_Kvaeg.aspx?ID=10183; accessed 18 October 2010).Google Scholar
Earl, D.A. 2009. Structure Harvester v0.3 (available at http://users.soe.ucsc.edu/~dearl/software/struct_harvest/).Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14: 26112620.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinf. Online, 1: 4750.CrossRefGoogle Scholar
Fernández, J., Toro, M.A. & Caballero, A. 2008. Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics, 179: 683692.CrossRefGoogle ScholarPubMed
FAO. 2007a. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky, B. & Pilling, D.. Rome. (available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO. 2007b. GLOBAL PLAN OF ACTION FOR ANIMAL GENETIC RESOURCES and the INTERLAKEN DECLARATION adopted by the International Technical Conference on Animal Genetic Resources for Food and Agriculture. Interlaken, Switzerland, 3–7 September 2007 (available at http://www.fao.org/docrep/010/a1404e/a1404e00.htm).Google Scholar
Geweke, J. 1992. Bayesian statistics: evaluating the accuracy of sampling–based approaches to calculating posterior moments. New York, Oxford University Press.Google Scholar
Hanotte, O., Bradley, D.G., Ochieng, J.W., Verjee, Y., Hill, E.W. & Rege, J.E.O.R. 2002. African pastoralism: genetic imprints of origin and migration. Science, 296: 336339.CrossRefGoogle Scholar
Hedrick, P. 2002. Genetics of populations. Massachusetts, Jones and Bartlett Publishers.Google Scholar
Huson, D.H. & Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol., 23: 254267.CrossRefGoogle ScholarPubMed
Jakobsson, M. & Rosenberg, N.A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23: 18011806.CrossRefGoogle ScholarPubMed
Kantanen, J., Olsaker, I., Holm, L.-E., Lien, S., Vilkki, J., Brusgaard, K., Eythorsdottir, E., Danell, B. & Adalsteinsson, S. 2000. Genetic diversity and population structure of 20 North European cattle breeds. Heredity, 91: 446457.CrossRefGoogle ScholarPubMed
Kim, K.I., Lee, J.H., Lee, S.S. & Yang, Y.H. 2003. Phylogenetic relationships of northeast Asian cattle to other cattle populations determined using mitochondrial DNA D–loop sequence polymorphism. Biochem. Genet., 41: 9198.CrossRefGoogle ScholarPubMed
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23: 29472948.CrossRefGoogle ScholarPubMed
Loftus, R.T., Maghugh, D.E., Bradley, D.G., Sharp, P.M. & Cunningham, P. 1994. Evidence for two independent domestications of cattle. Proc. Natl Acad. Sci. U.S.A., 91: 27572761.CrossRefGoogle ScholarPubMed
Meirmans, P.G. & Van Tienderen, P.H. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes, 4: 792794.CrossRefGoogle Scholar
Negrini, R., Nijman, I.J., Milanesi, E., Moazami-Goudarzi, K., Williams, J.L., Erhardt, G., Dunner, S., Rodellar, C., Valentini, A., Bradley, D.G., Olsaker, I., Kantanen, J., Ajmone-Marsan, P., Lenstra, J.A. & the European Cattle Genetic Diversity Consortium. 2007. Differentiation of European cattle by AFLP fingerprinting. Anim. Genet., 38: 6066.CrossRefGoogle ScholarPubMed
Nei, M. 1987. Molecular evolutionary genetics. New York, Columbia University Press.CrossRefGoogle Scholar
Peakall, R. & Smouse, P. 2006. GENALEX ver.6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol., 6: 288295.CrossRefGoogle Scholar
Posada, D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol., 25: 12531256.CrossRefGoogle ScholarPubMed
Pritchard, J.K., Stephens, M. & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945959.CrossRefGoogle ScholarPubMed
Rambaut, A. 1996. SE-AL sequence alignment editor, v. 2.0a11. Oxford, UK, Department of Zoology, University of Oxford.Google Scholar
Raymond, M. & Rousset, F. 1995. GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. Heredity, 86: 248249.CrossRefGoogle Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing [Online]. Vienna, Austria (available at http://www.R-project.org; accessed 22 March 2011).Google Scholar
Reed, D.H. & Frankham, R. 2003. Correlation between fitness and genetic diversity. Conserv. Biol., 17: 230237.CrossRefGoogle Scholar
Rosenberg, N.A. 2004. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes, 4: 137138.CrossRefGoogle Scholar
Rozas, J., Sanchéz-DelBarrio, J.C., Messeguer, X. & Rozas, R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 24962497.CrossRefGoogle ScholarPubMed
Smith, B.J. 2007. BOA: an R package for MCMC output convergence assessment and posterior inference. J. Statist. Softw., 21: 137.CrossRefGoogle Scholar
Sørensen, A.C., Sørensen, M.K. & Berg, P. 2005. Inbreeding in Danish dairy cattle breeds. J. Dairy Sci., 88: 18651872.CrossRefGoogle ScholarPubMed
Taberlet, P., Valentine, A., Rezaei, H.R., Naderi, S., Pompanon, F., Negrini, R. & Ajmone-Marsan, P. 2008. Are cattle, sheep, and goats endangered species? Mol. Ecol., 17: 275284.CrossRefGoogle ScholarPubMed
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.CrossRefGoogle ScholarPubMed
Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evolut. 10: 512526.Google ScholarPubMed
Tapio, I., Värv, S., Bennewitz, J., Maleviciute, J., Fimland, E., Grislis, Z., Meuwissen, T.H.E., Miceikiene, I., Olsaker, I., Viinalass, H., Vilkki, J. & Kantanen, J. 2006. Prioritization for conservation of Northern European cattle breeds based on analysis of microsatellite data. Conserv. Biol., 20: 17681779.CrossRefGoogle ScholarPubMed
Toro, M.A. & Caballero, A. 2005. Characterization and conservation of genetic diversity in subdivided populations. Philos. Trans. R. Soc. Lond., 360: 13671378.CrossRefGoogle ScholarPubMed
Toro, M.A., Fernández, J. & Caballero, A. 2009. Molecular characterization of breeds and its use in conservation. Livestock Sci., 120: 174195.CrossRefGoogle Scholar
Troy, C.S., Machugh, D.E., Bailey, J.F., Magee, D.A., Loftus, R.T., Cunningham, P., Chamberlain, A.T., Sykes, B.C. & Bradley, D.G. 2001. Genetic evidence for Near–Eastern origins of European cattle. Nature, 410: 10881091.CrossRefGoogle ScholarPubMed
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. 2004. MICRO–CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535538.CrossRefGoogle Scholar
Wahlund, S. 1928. Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas, 11: 65106.CrossRefGoogle Scholar
Weir, B.S. & Cockerham, C.C. 1984. Estimating F–statistics for the analysis of population structure. Evolution, 38: 13581370.Google ScholarPubMed
Wilson, G.A. & Rannala, B. 2003. Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163: 11771191.CrossRefGoogle ScholarPubMed
Withen, K.B., Brüniche-Olsen, A., Pedersen, B.V., European Cattle Genetic Diversity Consortium & Gravlund, P., 2011. The Agersoe cattle: the last remnants of the Danish Island cattle (Bos taurus)? J. Anim. Breed. Genet., 128: 141152.CrossRefGoogle ScholarPubMed