Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:22:03.840Z Has data issue: false hasContentIssue false

Path analysis of the relationship between body weight and some linear characters in West African Dwarf sheep

Published online by Cambridge University Press:  08 December 2014

A.J. Yunusa*
Affiliation:
Animal Breeding and Genetics Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
A.E. Salako
Affiliation:
Animal Breeding and Genetics Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
O.B. Okewoye
Affiliation:
Animal Breeding and Genetics Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
*
Correspondence to: A.J. Yunusa, Animal Breeding and Genetics Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria. email: alabajolaoye@gmail.com.
Get access

Summary

The usefulness of correlation analysis in life sciences is enhanced when the coefficient is partitioned into direct effects of one trait on the other and indirect effects caused by other characters which may be of importance in selection. A total of 417 mature (>22 months) West African Dwarf (WAD) sheep comprising of 201 rams and 216 ewes intensively reared were used for this study. Data were taken on body weight (BW) and 19 linear conformation traits. Linear body measurements considered were rump width (RW), rump length (RL), tail length (TL), wither height (WH),thorax depth (TD), shin circumference (SC), heart girth (HG), paunch girth (PG), rump height (RH), ear length (EL), fore-leg length (FLL), rear-leg length (RLL), body length (BL), shoulder width (SW), neck circumference (NC), head length (HL), head width (HW), horn length (HoL) and hock length (Hock). Descriptive statistics and path coefficients were computed. Correlation analysis was also explored to determine the degree of association among variables. Sexual dimorphism was observed in all traits considered (p < 0.05), except RL. Large coefficients of variation were obtained for BW, PG and NC relative to other traits considered. All linear traits had significantly positive (p < 0.05) correlations with BW in both sexes. The ranges of correlation between BW and all linear body parameters were, 0.227–0.726 and 0.183–0.878 in rams and ewes, respectively. The highest correlations with BW in rams and ewes were obtained for HG and NC, respectively. Significant path coefficients were obtained for HG and TD in rams while HG, FLL, PG, NC and RL had significant (p < 0.05) path coefficients in ewes. Though many predictor variables were considered in this study, it was concluded that HG contributed most to the coefficient of determination in both sexes. Moreover, all other predictor variables with similar (p > 0.05) path coefficients had high correlations with BW, their indirect effects were obtained mostly through HG.

Résumé

L'utilité de l'analyse de corrélation en sciences de la vie est améliorée lorsque le coefficient est divisée en effets directs d'un trait sur les autres et les effets indirects causés par d'autres personnages qui peuvent être d'une importance dans la sélection. Un total de 417 matures (>22 mois) nains d'Afrique de l'Ouest (WAD) moutons comprenant 201 béliers et 216 brebis en élevage intensif ont été utilisés pour cette étude. Les données ont été prises sur le poids corporel (BW) et 19 caractères de conformation linéaires. Mensurations linéaires considérés étaient largeur croupe (RW), longueur croupe (RL), longueur de la queue (TL), Hauteur au garrot (WH), la profondeur du thorax (TD), tibia circonférence (SC), circonférence de coeur (HG), la circonférence panse (PG), hauteur croupe (RH), la longueur de l'oreille (EL), la longueur des antérieurs (FLL), longueur arrière-jambe (RLL), la longueur du corps (BL), la largeur des épaules (SW), circonférence du cou (NC), longueur de la tête (HL), la largeur de la tête (HW), longueur des cornes (HOL) et la longueur du jarret (Hock). Statistiques descriptives et coefficients de piste ont été calculés. L'analyse de corrélation a également été examinée pour déterminer le degré d'association entre les variables. Le dimorphisme sexuel a été observée chez tous les caractères considérés (p 0.05), à l'exception RL. Des coefficients de variation ont été obtenus pour BW, PG et NC par rapport à d'autres caractéristiques considérées comme. Tous les traits linéaires ont des corrélations positives significatives (p 0.05) avec BW chez les deux sexes. Les gammes de corrélation entre BW et tous les paramètres de corps linéaires étaient, de 0.227 à 0.726 et de 0.183 à 0.878 en béliers et brebis respectivement. Les plus fortes corrélations avec le poids corporel chez les béliers et brebis ont été obtenus pour HG et NC respectivement. Coefficients de chemin significatives ont été obtenues pour HG et TD dans béliers tout HG, FLL, PG, NC et RL ont significatifs (p < 0.05) des coefficients de chemin chez les brebis. Bien que de nombreuses variables prédictives ont été pris en compte dans cette étude, il a été conclu que HG le plus contribué à le coefficient de détermination dans les deux sexes. En outre, toutes les autres variables prédictives avec similaires (p > 0.05) coefficients de piste ont une forte corrélation avec BW, leurs effets indirects ont été obtenus principalement par HG.

Resumen

La utilidad de los análisis de correlación en ciencias de la vida se ve reforzada cuando el coeficiente se divide en los efectos directos de un rasgo sobre los demás e indirectos efectos causados por otros personajes que pueden ser de importancia en la selección. Un total de 417 maduras (>22 meses) West African Dwarf (WAD) ovejas que consta de 201 carneros y 216 ovejas cría intensiva se utilizaron para este estudio. Los datos se tomaron en el peso corporal (PC) y 19 rasgos de conformación lineal. Medidas corporales lineales considerados fueron anchura grupa (RW), longitud de la grupa (RL), longitud de la cola (TL), altura a la cruz (WH), profundidad del tórax (TD), la circunferencia de la pantorrilla (SC), perímetro torácico (HG), la circunferencia panza (PG), altura a la grupa (RH), longitud de la oreja (EL), longitud de la pata delantera (FLL), longitud trasera de la pierna (RLL), longitud del cuerpo (LC), anchura del hombro (SW), circunferencia del cuello (NC), longitud de la cabeza (HL), ancho de la cabeza (HW), longitud de los cuernos (HOL) y duración de la corva (Hock). Estadística descriptiva y coeficientes de trayectoria se calcularon. El análisis de correlación también fue explorado para determinar el grado de asociación entre las variables. El dimorfismo sexual se observó en todos los rasgos considerados (p 0.05), con excepción de RL. Las grandes coeficientes de variación fueron obtenidos para PN, PG y NC en relación con otros rasgos considerados. Todos los rasgos lineales tenían (p < 0.05) correlaciones significativamente positivas con BW en ambos sexos. Los rangos de correlación entre BW y todos los parámetros corporales lineales fueron, 0.227–0.726 y 0.183–0.878 de carneros y ovejas respectivamente. Las correlaciones más altas con el peso corporal en carneros y ovejas fueron obtenidos para HG y NC, respectivamente. Coeficientes de trayectoria significativas fueron obtenidas para HG y TD en los carneros mientras HG, FLL, PG, NC y RL tuvieron significativas (p 0.05) coeficientes de trayectoria en las ovejas. Aunque se consideraron muchas variables de predicción en este estudio, se concluyó que HG más contribuyó al coeficiente de determinación en ambos sexos. Por otra parte, todas las demás variables de predicción con (p > 0.05) coeficientes de trayectoria similares tenían altas correlaciones con BW, sus efectos indirectos fueron obtenidos principalmente a través de HG.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Moneim, A.Y. 2009. Use of live body measurements for prediction of body and carcass cuts weights in three Egyptian breeds of sheep. Egypt. J. Sheep Goat Sci., 2: 1732.Google Scholar
Afolayan, R.A., Adeyinka, I.A. & Lakpini, C.A.M. 2006. Prediction of live weight from objective live-dimentional traits in Yankassa sheep. In Proceeding of the 31st Annual Conference of the Nigerian Society for Animal Production, March 12th–15th 2006, Bayero University, Kano, Nigeria.Google Scholar
Agaviezor, B.O., Adefenwa, M.A., Peters, S.O., Yakubu, A., Adebambo, O.A., Ozoje, M.O., Ikeobi, C.O.N., Ilori, B.M., Wheto, M., Ajayi, O.O., Amusan, S.A., Okpeku, M., Onasanya, G.O., De Donato, M. & Imumorin, I.G. 2012a. Genetic diversity analysis of the mitochondrial D-loop of Nigerian indigenous sheep. Anim. Genet. Res. Food Agric. Organ. UN, 50: 1320.Google Scholar
Agaviezor, B.O., Peters, S.O., Adefenwa, M.A., Yakubu, A., Adebambo, O.A., Ozoje, M., Ikeobi, C.O.N., Wheto, M., Ajayi, O.O., Amusan, S.A., Ekundayo, O.J., Sanni, T.M., Okpeku, M., Onasanya, G.O., De Donato, M., Ilori, B.M., Kizilkaya, K. & Imumorin, I.G. 2012b. Morphological and DNA diversity of Nigerian indigenous sheep. J. Anim. Sci. Biotechnol., 3: 38. (available at http://www.jasbsci.com/content/3/1/38).CrossRefGoogle ScholarPubMed
FAO. 2012. Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11. Rome. (available at http://www.fao.org/docrep/015/i2686e/i2686e00.htm).Google Scholar
Gill, J.L. 1986. Outliers and influence in multiple regression. J. Anim. Breed. Genet., 103: 161175.CrossRefGoogle Scholar
Latshaw, J.D. & Bishop, B.L. 2001. Estimating body weight and body composition of chickens by using noninvasive measurements. Poult. Sci., 80: 868873.CrossRefGoogle ScholarPubMed
Marjanovic- Jeromela, A., Marinkovic, R., Mijic, A., Zdunic, Z., Ivanovska, S. & Jankulovska, M. 2008. Correlation and path analysis of quantitative traits in winter rapeseed (Brassica napus L). Agriculturae Conpectus Scientificus, 73: 1318.Google Scholar
Ogah, D.M., Yakubu, A., Momoh, M.O. & Dim, N.I. 2011. Relationship between some body measurements and live weight in adult Muscovy ducks using path analysis. Trakia J. Sci., 9(1): 5861.Google Scholar
Olawoyin, O.O. 2007. Prediction equations and inter-relationships among selected growth traits in cockerels. Afr. J. Anim. Biomed. Sci., 2(1): 2126.Google Scholar
Otoikhian, C.S.O., Otoikhian, A.M., Akporhuarho, O.P. & Isidahomen, C. 2008. Correlation of body weight and some body measurement parameters in Ouda sheep under extensive management system. Afr. J. Gen. Agric., 3: 129133.Google Scholar
Pimentel, E.C.G., Queiroz, S.A., Carvalheiro, R. & Fries, L.A. 2007. Use of Ridge regression for prediction of early growth performance in crossbred calves. Genet. Mol. Biol., 30: 536544.CrossRefGoogle Scholar
Raji, A.O., Igwebuike, J.U. & Usman, M.T. 2009. Zoometrical body measurements and their relation with live weight in matured local muscovy ducks in Borno state Nigeria. ARPN J. Agric. Biol. Sci., 4: 5862.Google Scholar
Salako, A.E. & Ngere, L.O. 2002. Application of multifactorial discriminant analysis in the Morphometric structural differentiation of the WAD and Yankasa sheep in the humid southwest Nigeria. Nig. J. Anim. Prod., 29(2): 163167.Google Scholar
Searle, T.N., McGraham, W. & Donnelly, J.R. 1989. Change of skeleton dimension during growth in sheep; the effect of nutrition. J. Agric. Sci. (Cambridge), 112: 321327.CrossRefGoogle Scholar
Udeh, I., Isikwenu, J.O. & Ukughere, G. 2011. Performance characteristics and prediction of body weight using linear body measurements in four strains of broiler chicken. Int. J. Anim. Vet. Adv., 3(1): 4446.Google Scholar
Wu, Z.F., Ma, X.P., Tian, S.F., Wu, S.Q., Li, C.X., Guan, L.H., Li, W.H. & Wang, H.Y. 2008. Path analysis on weight, body dimension and ear type of Saibei rabbits. Proceedings of 9th World Rabbit Congress, Verona, Italy, June 10–13, 2008, p. 261264.Google Scholar
Yakubu, A. 2010. Path coefficient and path analysis of body weight and biometric traits in Yankasa lambs. Slovakia J. Anim. Sci., 43(1): 1725.Google Scholar
Yakubu, A. & Mohammed, G.L. 2012. Application of path analysis methodology in assessing the relationship between body weight and biometric traits of red sokoto goats in northern Nigeria. Biotechnol. Anim. Husbandry, 28(1): 107117.CrossRefGoogle Scholar
Yakubu, A. & Salako, A. 2009. Path coefficient analysis of body weight and morphological traits of Nigerian indigenous chickens. Egypt. Poult. Sci., 29(III): 837850.Google Scholar
Yunusa, A.J., Salako, A.E. & Oladejo, O.A. 2013. Morphometric characterization of Nigerian indigenous sheep using multifactorial discriminant analysis. Int. J. Biodivers. Conserv., 5(10): 661665.Google Scholar