Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:26:42.012Z Has data issue: false hasContentIssue false

Phenotypic and morphological characterization of indigenous chicken populations in southern region of Ethiopia

Published online by Cambridge University Press:  25 August 2011

Aberra Melesse*
Affiliation:
Department of Animal and Range Sciences, Hawassa University, Hawassa, Ethiopia
Tegene Negesse
Affiliation:
Department of Animal and Range Sciences, Hawassa University, Hawassa, Ethiopia
*
Correspondence to: A. Melesse, P.O. Box 5, Hawassa University, Hawassa, Ethiopia. email: a_melesse@yahoo.com; aberram@fastmail.fm
Get access

Summary

Phenotypic characterization of indigenous chicken resources is a prerequisite for their rational utilization. Data were collected from 748 randomly selected households (HHs) using structured questionnaires. Visual appraisal was conducted to study morphological traits of indigenous chicken populations. Quantitative data were collected on body weight and shank length from both sexes. The results indicated that 55.0 percent of chicken populations were single combed followed by rose (28.5 percent) and pea (15.2 percent) combs. Yellow was the major shank colour (52.5 percent), followed by white (29.1 percent) and black (14.7 percent). About 46.4, 34.2 and 19.4 percent of chicken populations exhibited red, white and yellow earlobes, respectively. The predominant plumage colour was Kei (36.6 percent) followed by Tikur (20.7 percent), Gebsima (15.3 percent), Netch (12.3 percent), Kokima (8.4 percent), Wosera (3.7 percent), Zigrima (1.7 percent) and Zagolima (1.3 percent). The highest adult body weight was found in Naked-neck chickens (1.7 kg), followed by Kei (1.5 kg), Gebsima (1.45 kg) and Wosera (1.46 kg). The Naked-neck and Wosera males had the longest shank of 115 and 113 mm, respectively. Kei male chickens had large body weight shank length ratio compared with other indigenous chickens. The present study suggests that indigenous chicken populations might possess useful genetic potentials for improved productivity under scavenging feed resource-based production systems.

Résumé

La caractérisation phénotypique des ressources génétiques des poules indigènes est une condition préalable à leur utilisation rationnelle. On a réuni les données à partir de 748 ménages choisis au hasard, en utilisant des questionnaires structurés. On a conduit un examen visuel des populations de poules indigènes pour étudier leurs caractères morphologiques. Les données quantitatives sur le poids corporel et sur la longueur des tarses des mâles et des femelles ont été rassemblées. Les résultats indiquent que 55,0 percent des poules n'ont qu'une seule crête, que pour 28,5 percent la crête est rose et, pour 15,2 percent, elle est en pois. Les tarses sont principalement jaunes (52,5 percent), ensuite blancs (29,1 percent) et noirs (14,7 percent). Environ 46,4, 34,2 et 19,4 percent des populations de poules présentent respectivement des lobes auriculaires rouges, blancs et jaunes. La couleur prédominante du plumage est Kei (rouge, 36,6 percent), Tikur (noir, 20,7 percent), Gebsima (gris, 15,3 percent), Netch (blanc, 12,3 percent), Kokima (8,4 percent), Wosera (3,7 percent), Zigrima (1,7 percent) et Zagolima (1,3 percent). Le poids corporel le plus élevé est celui des poules Naked Neck (1,7 kg), ensuite des Kei (1,5 kg), des Gebsima (1,45 kg) et des Wosera (1,46 kg). Les mâles Naked Neck et Wosera ont les tarses les plus longs, respectivement de 115 et de 113 mm. Les mâles Kei ont une proportion poids corporel/longueur des tarses considérable par rapport aux autres poules indigènes. Cette étude suggère que les poules indigènes possèdent probablement des potentialités génétiques utiles qui permettraient d'accroître la productivité dans le cadre des systèmes de production basés sur les ressources résiduelles.

Resumen

Caracterización fenotípica de los recursos locales aviares es un requisito previo para su utilización racional. Se ha recopilado información de 748 familias seleccionada al azar (HHs, por sus siglas en inglés) por medio de cuestionarios. Se ha llevado a cabo una evaluación visual con objeto de estudiar las características morfológicas de las poblaciones locales de gallinas. Los datos cuantitativos han sido obtenidos a partir del peso corporal y de la longitud del tarso en ambos sexos. Los resultados señalaron que el 55 percent de población de gallinas presenta cresta sencilla, seguida del tipo de rosa (28,5 percent) y guisante (15,2 percent). El colour mayoritario de los tarsos es el amarrillo (52,5 percent), seguido por el blanco (29,1 percent) y el negro (14,7 percent). El 46,4, 34,2 y 19,4 percent de las poblaciones de gallina estudiada presenta orejillas de colour rojo, blanco y amarillo, respectivamente. El colour del plumaje predominante es el Kei (36,6 percent), seguido de Tikur (20,7 percent), Gebsima (15,3 percent), Netch (12,3 percent), Kokima (8,4 percent), Wosera (3,7 percent), Zigrima (1,7 percent) y Zagolima (1,3 percent). El peso más alto en ejemplares adultos lo han presentado los individuos de cuello desnudo (1,7 Kg.), seguido por los Kei (1,5 Kg.), Gebsima (1,45 kg) y Wosera (1,46 kg). Los ejemplares macho de cuello desnudo y los Wosera son los que han presentado tarsos con mayor longitud, de 115 y 113 mm., respectivamente. Los machos de las gallinas Kei presentaban una longitud corporal y del tarso mayor que otras gallinas indígenas. El presente estudio señala que las poblaciones de gallinas autóctonas podrían ser potencialmente útiles genéticamente para mejorar la productividad bajo sistemas de producción basado en alimentación procedente de residuos.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajang, O.A, Prijono, S. & Smith, W.K. 1993. The effect of dietary protein level on growth and body composition of fast and slow feathering broiler chickens. Br. Poultry Sci. 34: 7391.CrossRefGoogle Scholar
Anderson, S. 2003. Valuing animal genetic resources. Ecol. Econ. 45 (3): 331339.CrossRefGoogle Scholar
Badubi, S.S., Rakereng, M. & Marumo, M. 2006. Morphological characteristics and feed resources available for indigenous chickens in Botswana. Livestock Res. Rural Dev. 18 (1) (available at www.cipav.org.co/lrrd/lrrd18/1/badu18003.htm).Google Scholar
Batty, J. & Francis, C. 1979. Poultry color guide, 2nd edition. Saiga Publishing Co. Ltd, Surrey, England.Google Scholar
Bell, D.D. 2002. Anatomy of the chicken. In Bell, D.D. and & Weaver, W.D. eds. Commercial chicken meat and egg production, 5th edition. pn., pp. 4546. USA, Springer Science + Business Media, Inc.CrossRefGoogle Scholar
Central Statistics Authority (CSA). 2001. Agricultural sample survey 2000–2001. Report on livestock and livestock characteristics, Vol. II. Statistical Bulletin No. 245. Addis Ababa, Ethiopia.Google Scholar
Central Statistics Authority (CSA). 2004. Agricultural sample survey 2003–2004. Report on livestock and livestock characteristics, Vol. II. Statistical Bulletin No. 302. Addis Ababa, Ethiopia.Google Scholar
Central Statistics Authority (CSA). 2009. Agricultural sample survey 2008–2009. Report on livestock and livestock characteristics, Vol. II. Statistical Bulletin No. 446. Addis Ababa, Ethiopia.Google Scholar
Dana, N., Dessie, T., van der Waaij, H.L. & van Arendonk, A.M.J. 2010. Morphological features of indigenous chicken populations of Ethiopia. Anim. Genet. Resour. 46: 1123.CrossRefGoogle Scholar
Deeb, N. & Cahaner, A. 2001. Genotype-by-environment interaction with broiler genotypes differing in growth rate: 1. The effects of high ambient temperature and naked-neck genotype on stocks differing in genetic background. Poultry Sci. 80: 695702.CrossRefGoogle Scholar
Duguma, R. 2006. Phenotypic characterization of some indigenous chicken ecotypes of Ethiopia. Livestock Res. Rural Dev. 18 (9) (available at www.cipav.org.co/lrrd/lrrd18/9/dugu18131.htm).Google Scholar
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwaza, D.S. 2010. Variations in qualitative traits in the Nigerian local chicken. Int. J. Poultry Sci. 9 (10): 978979.CrossRefGoogle Scholar
Ensminger, M.E. 1992. Poultry science, 3rd edition. USA, Interstate Publisher Inc.Google Scholar
FAO. 1986. Animal genetic resources data banks: descriptor lists for poultry. Animal Production and Health Paper 59/3, pp. 1327. Rome.Google Scholar
FAO. 1997. Nations discuss utilization and conservation of genetic resources. In FAO, Global Programme for Management of Farm Animal Genetic Resources, Rome (available at http://dad.fao.org/dad-is/library/programm/index.html).Google Scholar
FAO. 2007. The state of the world's animal genetic resources for food and agriculture, edited by B. Rischkowsky & D.Pilling. Rome.Google Scholar
Faruque, S., Siddiquee, N.U., Afroz, M.A. & Islam, M.S. 2010. Phenotypic characterization of Native Chicken reared under intensive management system. J. Bangladesh Agric. Univ. 8(1): 7982.CrossRefGoogle Scholar
Griffin, A.M., Renema, R.A., Robinson, F.E. & Zuidhof, M.J. 2005. The influence of rearing light period and the use of broiler or broiler breeder diets on 42-day body weight, fleshing and flock uniformity in broiler stocks. J. Appl. Poultry Res. 14: 204216.CrossRefGoogle Scholar
Halima, H., Neser, F.W.C. & van Marle-Koster, E. 2007 a. Village based indigenous chicken production system in north-west Ethiopia. Trop. Anim. Health Product. 39: 189197.CrossRefGoogle ScholarPubMed
Halima, H., Neser, F.W.C., van Marle-Koster, E. & deKock, A. 2007 b. Phenotypic variation of indigenous chicken populations in northwest Ethiopia. Trop. Anim. Health Product. 39: 507513.CrossRefGoogle ScholarPubMed
Hoffmann, I. & Scherf, B. 2005. Management of farm animal genetic diversity: opportunities and challenges. In Tewolde, Rosati A. & Mosconi, C. eds. Animal production and animal science worldwide. WAAP book of the year 2005. pp. 221246. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Horst, P. 1989. Native fowls as reservoir for genomes and major genes with direct and indirect effect on the adaptability and their potential for tropically oriented breeding plans. Arch. Geflugelkunde 53(3): 93101.Google Scholar
Jacob, P.J., Miles, D.R. & Mather, F.B. 2009. Egg quality. University of Florida, Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service, Document PS24 (available at http://edis.ifas.ufl.edu).Google Scholar
Kibret, B. 2008. In situ characterization of local chicken eco-type for functional traits and production system in Fogera woreda, Amhara Regional State. Haramaya University, Ethiopia. pp. 107 (M.Sc. thesis).Google Scholar
Maak, S., Melesse, A., Schmidt, R. & vonLengerken, G. 2003. Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. Br. Poultry Sci. 44: 133138.CrossRefGoogle ScholarPubMed
Mcainsh, C.V., Kusina, J., Madsen, J. & Nyoni, O. 2004. Traditional chicken production in Zimbabwe. World's Poultry Sci. 60: 233246.CrossRefGoogle Scholar
Melesse, A. 2000. Comparative studies on performance and physiological responses of Ethiopian indigenous (Angete-Melata) chickens and their F1-crosses to long-term heat exposure. Halle-Saale, Martin-Luther University of Halle-Wittenberg, Germany. 120 pp. (Ph.D. thesis).Google Scholar
Melesse, A., Maak, S. & vonLengerken, G. 2005. The performance of naked-neck and their F1 crosses with Lohmann White and New Hampshire chicken breeds under long-term heat stress conditions. Ethiopian J. Anim. Product. 5: 91107.Google Scholar
Missohou, A., Sow, R.S. & Ngwe-Assoumou, C. 1998. Morphological and biometrical characteristics of the Senegal indigenous chicken. Anim. Genet. Resour. Inform. 24: 6369.CrossRefGoogle Scholar
Moges, F., Melesse, A. & Dessie, T. 2010. Assessment of village chicken production system and evaluation of the productive and reproductive performance of local chicken ecotype in Bure district, North West Ethiopia. Afr. J. Agric. Res. 5 (13): 17391748.Google Scholar
Msoffe, P.L.M., Minga, U.M., Olsen, J.E., Yongolo, M.G.S., Juul-Madsen, H.R., Gwakisa, P.S. & Mtambo, M.M.A. 2001. Phenotypes including immunocompetence in scavenging local chicken ecotypes in Tanzania. Trop. Anim. Health Product. 33: 341354.CrossRefGoogle ScholarPubMed
Renema, R.A., Robinson, F.E., Beliveau, R.M., Davis, H.C. & Lindquist, E.A. 2007. Relationships of body weight, feathering, and footpad condition with reproductive and carcass morphology of end-of-season commercial broiler breeder hens. J. Appl. Poultry Res. 16: 2738.CrossRefGoogle Scholar
Roberts, V. 1997. British poultry standards, 5th edition. pp. 418. Blackwell Sci. Ltd, UK.Google Scholar
SAS, 1996. Statistical Analysis System SAS/STATâ Guide version 6.12. Raleigh, North Carolina, USA, SAS, Institute Inc.Google Scholar
Somes, R.G. 2003. Mutations and major variants of plumage and skin in chickens. In Crawford, R.D. ed. Poultry breeding and genetics, 3rd edition. pp. 169208. The Netherlands, Elsevier Science Publishers.Google Scholar
Ssewannyana, E., Ssali, A., Kasadha, T., Dhikusooka, M., Kasoma, P., Kalema, J., Kwatotyo, B.A. & Aziku, L. 2008. On-farm characterization of indigenous chickens in Uganda. J. Anim. Plant Sci. 1(2): 3337.Google Scholar
Stevens, L. 1991. Genetics and evolution of the domestic fowl. pp. 79104. UK, Cambridge University Press, .CrossRefGoogle Scholar
Tadelle, D. 2003. Phenotypic and genetic characterization of local chicken ecotypes in Ethiopia. Humboldt University of Berlin, Berlin, 209 pp. (Ph.D. thesis).Google Scholar
Teketel, F. 1986. Studies on the meat production potential of some local strains of chickens in Ethiopia. J.L. University of Geissen, Geissen, Germany. 186 pp. (Ph.D. thesis).Google Scholar
Weigend, S. & Romanov, M.N. 2001. Current strategies for the assessment and evaluation of genetic diversity in chicken resources. World Poultry Sci. J. 57: 275287.CrossRefGoogle Scholar
Yalcin, S., Testik, A., Ozkan, S., Settar, P., Celen, F. & Cahaner, A. 1997. Performance of naked-neck and normal broilers in hot, warm, and temperate climates. Poultry Sci. 76: 930937.CrossRefGoogle ScholarPubMed
Yunis, R. & Cahaner, A. 1999. The effects of naked-neck (Na) and frizzle (F) genes on growth and meat yield of broilers, and their interactions with ambient temperatures and potential growth rate. Poultry Sci. 78: 13471352.CrossRefGoogle ScholarPubMed