Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T02:51:37.520Z Has data issue: false hasContentIssue false

Phenotypic cluster and diversity analysis of native chickens in Western Visayas, Philippines

Published online by Cambridge University Press:  25 October 2013

J.C. Cabarles Jr.*
Affiliation:
OIC – Dean, Central Philippine University College of Agriculture, Resources and Environmental Sciences, Jaro, Iloilo City, Philippines
*
Correspondence to: J.C. Cabarles Jr., Central Philippine University, Jaro, Iloilo City, 5000, Philippines. tel.: +63–033 – 329 -1971; emails: jamescabarlesjr@gmail.com; jamescabarlesjr@yahoo.com
Get access

Summary

Western Visayas has largest population of native chickens in the Philippines; however, data on the phenotypic and genetic diversity is limited. Eight hundred and ten chickens from 270 different flocks, from six provinces within the region were chosen for characterization. Data collected includes farmer selection practices, means of identifying genetic groups and information on phenotypic traits of native chickens. This information was analysed using statistical tools suggested by FAO. Phenotypic diversity and equitability of distribution were analysed using Simpson's diversity index and equality of distribution. Results showed that native chicken genetic resources are comprised of two types, the Jolo and Bisaya; the latter was further divided into Bisaya–Cluster I and Bisaya–Cluster II. Jolo chickens were the heaviest (P < 0.01) but comparable with Bisaya–Cluster II in terms of egg weight, head shape and phenotypic distance. They all had higher diversity and equitability of distribution in their plumage colour and pattern, though the iris and shank colour had higher diversity but had limited distributions. Bisaya–Cluster II and Jolo chickens had higher diversity and above average distribution in liveweight. They were also homogenous in feather morphology and distribution; head and breast shape, and skeletal variants. Thus, the observed diversities and distributions can be used in identifying genetic materials for any breeding undertakings.

Résumé

Western Visayas possède la plus grande population de poulet indigène dans les Philippines. Toutefois, les données sur la diversité génétique et phénotypique est limité. Huit cent dix (810) poulets à partir de 270 troupeaux différents provenant également de six provinces de la région ont été caractérisés. Les données recueillies comprennent les pratiques de sélection des agriculteurs et des moyens d'identifier les groupes génétiques. Informations sur les traits phénotypiques des poulets indigènes ont été recueillies, aussi. Ceux-ci ont été analysées à l'aide d'outils statistiques proposés par la FAO. La diversité phénotypique et de l'équité de la distribution ont été analysés en utilisant l'indice de diversité de Simpson et l'égalité de la distribution. Les résultats ont montré que les ressources génétiques indigènes de poulet sont constitués de Jolo et Bisaye mais celle-ci a été encore divergé en Bisaye – Groupe I et Bisaye – Groupe II. Poulets Jolo étaient les plus lourds (P < 0.01), mais comparable à Bisaye – Groupe II en termes de poids de l'œuf, forme de la tête et de la distance phénotypique. Ils avaient tous une plus grande diversité et de l'équité de la distribution dans leur plumage couleur et le motif. La couleur de l'iris et de la tige a une plus grande diversité, mais avait distributions limitées. Bisaye – Groupe II et des poulets Jolo eu une plus grande diversité et surtout la distribution moyenne en poids vif. Ils étaient homogènes dans la morphologie des plumes et des variantes de distribution, la tête et la forme du sein, et du squelette. Ainsi, les diversités observées et les distributions peuvent être utilisés pour identifier le matériel génétique pour toutes les entreprises d'élevage.

Resumen

Visayas Occidental tiene la mayor población de pollos nativos en las Filipinas. Sin embargo, los datos sobre la diversidad fenotípica y genética es limitada. Se caracterizaron 810 ocho trescientos diez pollos de 270 diferentes rebaños que estaban divididos igualmente en seis provincias de la región. Los datos recogidos incluyen prácticas de los agricultores de selección y los medios de identificación de los grupos genéticos. La información sobre los rasgos fenotípicos de pollos nativos se reunieron, también. Estos fueron analizados utilizando herramientas estadísticas sugeridas por la FAO. Diversidad fenotípica y la equidad de la distribución fueron analizados mediante el índice de Simpson diversidad y la igualdad de la distribución. Los resultados mostraron que los recursos genéticos nativos de pollo se componen de Jolo y Bisaya pero este último se separaron aún más en Bisaya – Grupo I y Bisaya – Grupo II. Jolo pollos fueron las más pesadas (P < 0.01), pero comparable a Bisaya – Grupo II en términos de peso del huevo, forma de la cabeza y la distancia fenotípica. Todos ellos tenían una mayor diversidad y equidad de la distribución en el color de su plumaje y el patrón. El color del iris y la caña tuvieron mayor diversidad, pero tenían distribuciones limitadas. Bisaya – II Cluster y pollos Jolo presentaron mayor diversidad y distribución por encima del promedio en peso vivo. Ellos fueron homogéneos en la morfología de las plumas y las variantes de distribución, la cabeza y la forma del pecho y esquelético. Por lo tanto, las diversidades observadas y las distribuciones se puede utilizar en la identificación de los materiales genéticos de las empresas de cría.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelqader, A., Wollny, C.B.A. & Gauly, M. 2008. On-farm investigation of local chicken biodiversity and performance potentials in rural areas of Jordan. Animal Genetic Resources Information, 43: 4958.CrossRefGoogle Scholar
Al-Atiyat, R. 2009. Diversity of chicken populations in Jordan determine using discriminate analysis of performance traits. International Journal of Agriculture and Biology, 11(4): 374380.Google Scholar
Barbosa, L., Regazzi, A.J., Lopes, P.S., Breda, F.C., Torres, R.A. & Filho-Torres, R.A. 2005. Evaluation of the genetic divergence among lines of laying hens using cluster analysis. Brazilian Journal of Poultry Science, 7(2): 7984.CrossRefGoogle Scholar
BAS. 2011. Chicken: Inventory by Geolocation, Farm Type, Period and Year. Retrieved February 11, 2011, from CountrySTAT Philippines. (available at http://www.bas.gov.ph).Google Scholar
Beals, M., Gross, L. & Harrel, S. 1999. Diversity indices: Simpson's D and E. Retrieved October 5, 2011, from The University of Tennessee. (available at http://www.tiem.utk.edu/-mbeals/simpsomDI.html).Google Scholar
Boettcher, P.J., Tixier-Boichard, M., Toro, M.A., Simianer, H., Eding, H., Gandini, G., Joost, S., Garcia, D., Colli, L., Ajmone-Marsan, P. & The Globaldiv Consortium. 2010. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Animal Genetics, 41(Suppl. 1): 6477.Google Scholar
Cabarles, J.C.J., Lambio, A.L., Vega, R.S.A., Capitan, S.S. & Mendioro, M.S. 2012. Distinct morphological features of traditional chickens (Gallus gallus domesticus L) in Western Visayas, Philippines. Animal Genetic Resources, 51: 7387.Google Scholar
Cocjin, B.B., Lambio, A.L., Hipolito, S.U., Gonzales, V.T., Linga, M.C., Tomambo, E.D., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 1999. Improvement, utilization and conservation of the Darag Philippine native chicken. West Visayas State University Graduate Journal, 35(2): 1637.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Casiple, C.G. & Arenga, R.L. 2001. Organoleptic test and chemical analyses and meats of Philippine Chicken (Darag type) and commercial broiler. Philippine Journal of Veterinary and Animal Sciences, 27: 192200.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 2004. Comparison of breeding and production performance of Darag-type Philippine native chicken in 1999 and 2003. In Proceedings of the Philippine Society of Animal Science, pp. 12–15. Cebu, PSAS.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 2007. Improvement, utilization and conservation project for Philippine native chickens (Darag-type) in Western Visayas II: dispersal of the technology to farmer cooperators (Progeny testing). Philippine Journal of Veterinary and Animal Sciences, 33(1): 3946.Google Scholar
Cuesta, M.L. 2008. Pictorial Guidance for Phernotypic Characterization of Chickens and Ducks. FAOGCP/RAS/228/GER Working Paper No. 15. Rome.Google Scholar
DAD-IS. 2011. Breeds Reported by Philippines. Retrieved August 10, 2011, from Domestic Animal Diversity Information System. (available at http://dad.fao.org).Google Scholar
Dana, N., Dessie, T., van der Waaij, L.H. & van Arendonk, J.A.M. 2010. Morphological features of indigenous chicken populations of Ethiopia. Animal Genetic Resources, 46: 1123.Google Scholar
Davila, S.G., Gil, M.G., Resino-Talavan, P. & Campo, J.L. 2009. Evaluation of diversity between different Spanish chicken breeds, a tester line, and a White Leghorn population based on molecular markers. Poultry Science, 88: 25182525.Google Scholar
Ershad, S.M.E. 2005. Performance of hybrid layers and native hens under farmers' management in a selected area of Bangladesh. International Journal of Poultry Science, 4(4): 228232.Google Scholar
FAO. 2007. In Rischowsky, Barbara & Pilling, Dafydd eds. The State of the World's Animal Genetic Resources for Food and Agriculture. Rome, Food and Agriculture Organization of the United Nations (available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO. 2009. Characterization of indigenous chicken production system in Cambodia. In AHBL-Promoting Strategies for Prevention and Control of HPAI. Prepared by Dinesh, M.T., Geerlings, E., Solkner, J., Thea, S., Theme, O & Wurzinger, M.. Rome: FAO.Google Scholar
FAO. 2012. Phenotypic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines No. 11. Rome (available at http://www.fao.org/docrep/015/i2686e/i2686e00.htm).Google Scholar
FAO & UNEP. 1986. Animal Genetic Resources Data Banks – Descriptor list for Poultry. Rome, Italy, Food and Agriculture Organization of the United Nations.Google Scholar
Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, M.A., Scherf, B., Pilling, D., Negrini, R., Finlay, E.K., Jianlin, H., Groeneveld, E., Weigend, S. & The Golbaldiv Consortium. 2010. Genetic diversity in farm animals. Animal Genetics, 41(Suppl. 1): 631.Google Scholar
Hamer, K. 2010. The search winners and losers in a sea of climate change. IBIS – The International Journal of Avian Science, 152: 35.Google Scholar
Hiemstra, S.J., Drucker, A.G., Tvedt, M.W., Louwars, N., Oldenbroek, J.K., Awgichew, K., Kebede, S.A., Bhat, P.N. & da Silva Mariante, A. 2006. Exchange, Use and Conservation of Animal Genetic Resources. Rome, Food and Agriculture Organization of the United Nations.Google Scholar
Hoffmann, I. 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Animal Genetics, 41(Suppl. 1): 3246.Google Scholar
Hunter, P.R. & Gaston, M.A. 1988. Numerical index of the discrimatory ability of typing systems: an application of the Simpson's index of diversity. Journal of Clinical Microbiology, 26(11): 24652466.CrossRefGoogle Scholar
Lamont, M. 2009. Conservation introduction: a potential tool for Galliform conservation management. International Journal of Galliformes Conservation, 11: 6371.Google Scholar
Lopez, J. 2008. Performance of free-range “Darag” chickens under different farming systems. Philippine Council for Agriculture, Forestry and Natural Resources Research and Development Highlights 2007, 136–138.Google Scholar
Magpantay, V.A., Supangco, E.P., Pacificador, A.Y.J., Sevilla, C.C., Lambio, A.L. & Gayeta, E.C. 2006. Characterization of native chicken production system in a coconut-based farming system in Dolores, Quezon. Philippine Journal of Veterinary and Animal Sciences, 32(2): 195202.Google Scholar
Magurran, A.E. 2004. Biological Diversity – Measurement. UK, Blackwell Science Ltd.Google Scholar
Mapiye, C., Mwale, M., Mupangwa, J.F., Chimonyo, M., Foti, R. & Mutenje, M.J. 2008. A research review of village chicken production constraints and opportunities in Zimbabwe. Asian-Australian Journal of Animal Science, 21(11): 16801688.Google Scholar
Mwacharo, J.M., Nomura, K., Hanada, H., Jianlin, H., Hanotte, O. & Amano, T. 2007. Genetic relationships among Kenyan and other East African indigenous chickens. Animal Genetics, 38: 485490.Google Scholar
Moiseyeva, I.G., Romanov, M.N., Nikiforov, A.A., Sevastyanova, A.A. & Semyenova, S.K. 2003. Evolutionary relationships of red junglefowl and chicken breeds. Genetic Selection of Evolution, 35: 403423.Google Scholar
Price, D. 2004. Species diversity and seasonal abundance of Scrabaeoid dung bettles (Coleoptera:Scrabaeidae, Geotrupidae and Trogidae) attracted to cow dung in Central New Jersey. Journal of New York Entomological Society, 122(4): 334347.Google Scholar
Rege, J.E.O. & Gibson, J.P. 2003. Animal genetic resources and economic development: issues in relation to economic valuation. Ecological Economics, 45: 319330.Google Scholar
Roxas, N.P., Villanueva, E.M. & Lambio, A.L. 1996. Protein and isoenzymes polymorphisms in Philippine native chickens. Philippine Journal of Veterinary and Animal Sciences, 22(1&2): 18.Google Scholar
Somes, R. 1990. Mutations and major variants of muscles and skeleton in chickens. In Crawford, R., ed. Poultry Breeding and Genetics, pp. 209237. The Netherlands, Elsevier Science Publishers.Google Scholar
Tomambo, E.D., Cocjin, B.B., Roxas, G.F.A., Casiple, C.G. & Arenga, R.L. 2010. Production of Improved Day-old and “hardened Philippine Native (Darag) Chicks” – A Terminal Report. Iloilo City, West Visayas State University.Google Scholar
Wolanski, N.J., Renema, R.A., Robinson, F.E., Camey, V.L. & Fancher, B.I. 2007. Relationship among egg characteristics, chick measurement and early growth rate in ten broiler strain. Poultry Science, 86: 17841792.Google Scholar
Zaman, M.A., Sorensen, P. & Howlider, M.A.R. 2004. Egg production performances of a breed and three crossbreeds under semi-scavenging system of management. Livestock Research for Rural Development, 16, Article No. 60.Google Scholar
Zanetti, E., de Marchi, M., Dalvit, C. & Cassandro, M. 2010. Genetic characterization of local Italian breeds of chicken undergoing in situ conservation. Poultry Science, 89: 420427.Google Scholar
Supplementary material: File

Cabarles Supplementary Material

Tables

Download Cabarles Supplementary Material(File)
File 33.5 KB