Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T20:51:31.730Z Has data issue: false hasContentIssue false

Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens

Published online by Cambridge University Press:  11 April 2013

T.T. Desta*
Affiliation:
Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham, UK International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
T. Dessie
Affiliation:
International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
J. Bettridge
Affiliation:
International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK
S.E. Lynch
Affiliation:
International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK
K. Melese
Affiliation:
Ethiopian Institute of Agricultural Research, Debre Zeit Research Center, Debre Zeit, Ethiopia
M. Collins
Affiliation:
Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK
R.M. Christley
Affiliation:
Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK
P. Wigley
Affiliation:
Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK
P. Kaiser
Affiliation:
The Roslin Institute and R (D) SVS, University of Edinburgh, Midlothian, UK
Z. Terfa
Affiliation:
International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, UK Management School, University of Liverpool, UK
J.M. Mwacharo
Affiliation:
Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham, UK
O. Hanotte
Affiliation:
Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham, UK
*
Correspondence to: T.T. Desta.Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham, UK. emails: plxtd@nottingham.ac.uk, takele_taye@yahoo.com
Get access

Summary

Village chickens have been kept for millennia under patronage of smallholder farmers. Our study was intended at dissecting the signature of artificial selection and ecological variation on morphological structures of Ethiopian village chickens. This report was based on visual traits of 798 chickens and a concise one-to-one interview of 399 farmers for their preferences on chicken morphology. Significant population-specific differences in morphological counts were commonly found for rare morphological variants. Most of them were frequently seen in Jarso chickens, while some of them unique to Jarso chickens. This might be explained by the effect of location-specific evolutionary forces and differences in their breeding histories. The high within population variation in the frequency of morphological counts was observed among these panmictic chicken populations largely evolved under uncontrolled mating. Single comb was not (less) preferred by majority of the farmers (93.8 percent); it was thus present at a low frequency (26.7 percent). Farmers have shown high preference for yellow shank (42.3 percent), which was then frequently observed (61.1 percent). The reported reasons for morphological likeness were visual appeal, market demand and cultural and religious values. The absence of significant variation in preferences for chicken morphology among communities between the two study sites was attributed to their multifunctional needs.

Résumé

Les poules des zones rurales ont été maintenues depuis des milliers d'années sous les auspices des petits éleveurs. Notre étude a cherché à démêler les effets distinctifs que la sélection artificielle et la variation écologique ont eus sur la morphologie des poules des zones rurales éthiopiennes. Ce rapport s'est basé sur des traits visuels de 798 poules et sur une enquête concise, faite de façon individuelle, à 399 éleveurs auprès de leurs préférences en question de morphologie des poules. Des différences significatives, propres aux populations, ont généralement été décelées pour les mesures morphologiques chez des variantes morphologiques rares. La plupart d'entre elles ont été fréquemment observées chez les poules Jarso alors que certaines sont uniques aux poules Jarso. Ceci peut être expliqué par l'effet de forces évolutives propres à l'emplacement et par des différences historiques dans les pratiques d'élevage. Une grande variabilité intra-populationnelle a été observée pour la fréquence des mesures morphologiques parmi les populations panmictiques de poules qui, dans l'ensemble, ont évolué suivant des accouplements non contrôlés. La crête simple n'a pas été celle préférée par la plupart des éleveurs (93,8 pour cent); c'est ainsi qu'elle est présente à faible fréquence (26,7 pour cent). Les éleveurs ont montré une préférence prononcée pour les tarses jaunes (42,3 pour cent), qui sont fréquemment observés (61,1 pour cent). Les raisons signalées pour la ressemblance morphologique ont été l'attrait visuel, la demande du marché et les valeurs culturelles et religieuses. L'absence de variation significative, entre les communautés des deux lieux étudiés, pour les préférences sur la morphologie des poules a été attribuée à leurs besoins multifonctionnels.

Resumen

Las gallinas de las poblaciones rurales han sido conservadas durante milenios bajo el auspicio de los pequeños ganaderos. Nuestro estudio ha pretendido desentrañar el efecto distintivo que la selección artificial y la variación ecológica han tenido sobre la morfología de las gallinas de las áreas rurales etíopes. Este informe se basó en rasgos visuales de 798 gallinas y en una breve entrevista individual a 399 ganaderos sobre sus preferencias en torno a la morfología de las gallinas. De forma generalizada, se encontraron diferencias significativas, específicas de las poblaciones, para las medidas morfológicas en variantes morfológicas escasas. Por lo general, la mayoría fueron observadas en gallinas Jarso mientras que algunas fueron exclusivas de las gallinas Jarso. Esto se podría explicar por el efecto de fuerzas evolutivas específicas de la ubicación y por diferencias en sus respectivos procesos históricos de cría. Se observó una elevada variabilidad intrapoblacional en la frecuencia de las medidas morfológicas entre estas poblaciones panmícticas de gallinas que han evolucionado, en gran parte, siguiendo apareamientos indiscriminados. La mayoría de los ganaderos (93,8 por ciento) manifestaron que la cresta sencilla no era su preferida; por ello apareció en una baja frecuencia (26,7 por ciento). Los ganaderos mostraron una marcada preferencia por los tarsos amarillos (42,3 por ciento), que eran observados frecuentemente (61,1 por ciento). Las razones indicadas para la similitud morfológica fueron el atractivo visual, la demanda del mercado y los valores culturales y religiosos. La ausencia de variación significativa, entre las comunidades de los dos emplazamientos estudiados, para las preferencias acerca de la morfología de las gallinas se atribuyó a sus necesidades multifuncionales.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apuno, A.A., Mbap, S.T. & Ibrahim, T. 2011. Characterization of local chickens (Gallus gallus domesticus) in Shelleng and Song Local Government Areas of Adamawa State, Nigeria. Agriculture and Biology Journal of North America, 2(1): 614.CrossRefGoogle Scholar
Bartels, T. 2003. Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. Journal of Experimental Zoology, 298B: 91108.Google Scholar
Bateson, W. 1909. Mendel's principles of heredity. Cambridge, Cambridge University Press.Google Scholar
Betemariam, E.A. 2011. Forest diversity in fragmented landscapes of northern Ethiopia and implications for conservation. University of Bonn, Germany (PhD thesis).Google Scholar
Bhuiyan, A.K.F.H., Bhuiyan, M.S.A. & Deb, G.K. 2005. Indigenous chicken genetic resources in Bangladesh: current status and future outlook. Animal Genetic Resources Information, 36: 7384.Google Scholar
Blench, R.M. & Macdonald, K.C. 2000. Chickens. In Kenneth, F.K. & Kriemhild, C.O., eds, The Cambridge world history of food, Volume I, pp. 496499. Cambridge, Cambridge University Press.Google Scholar
Brisbin, I.L. Jr. & Peterson, A.T. 2007. Playing chicken with red jungle fowl: identifying phenotypic markers of genetic purity in Gallus gallus . Animal Conservation, 10: 429435.Google Scholar
Crawford, R.D. & Smyth, J.R. 1964. Studies of the relationship between fertility and the gene for rose comb in the domestic fowl. 1. The relationship between comb genotype and fertility. Poultry Science, 43: 10091017.CrossRefGoogle Scholar
Daikwo, I.S., Okpe, A.A. & Ocheja, J.O. 2011. Phenotypic characterization of local chickens in Dekina. International Journal of Poultry Science, 10(6): 444447.Google Scholar
Dana, N., Dessie, T., van der Waaij, L.H. & van Arendonk, J.A.M. 2010a. Morphological features of indigenous chicken populations of Ethiopia. Animal Genetic Resources, 46: 1123.CrossRefGoogle Scholar
Dana, N., van der Waaij, L.H., Dessie, T. & van Arendonk, J.A.M. 2010b. Production objectives and trait preferences of village poultry producers of Ethiopia: implications for designing breeding schemes utilizing indigenous chicken genetic resources. Tropical Animal Health and Production, 42: 15191529.Google Scholar
D'Andrea, A.C., Richards, M.P., Pavlish, L.A., Wood, S., Manzo, A. & Wolde-Kiros, H.S. 2011. Stable isotopic analysis of human and animal diets from two pre-Aksumite/proto-Aksumite archaeological sites in northern Ethiopia. Journal of Archaeological Science, 38: 367374.Google Scholar
Dessie, T. & Ogle, B. 2001. Village poultry production systems in the central highlands of Ethiopia. Tropical Animal Health and Production, 33(6): 521537.CrossRefGoogle ScholarPubMed
Dessie, T., Taye, T., Dana, N., Ayalew, W. & Hanotte, O. 2011. Current state of knowledge on phenotypic characteristics of indigenous chickens in the tropics. World's Poultry Science Journal, 67: 507516.Google Scholar
Dong Xuan, D.T., Szalay, I., Su, V.V., Tieu, H.V. & Dang Vang, N. 2006. Animal genetic resources and traditional farming in Vietnam. Animal Genetic Resources Information, 38: 117.Google Scholar
Dorshorst, B., Okimoto, R. & Ashwell, C. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. Journal of Heredity, 101(3): 339350.Google Scholar
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwaza, D.S. 2010. Variations in qualitative traits in the Nigerian local chicken. International Journal of Poultry Science, 9(10): 978979.Google Scholar
FAO. 2010. Chicken genetic resources used in smallholder production systems and opportunities for their development, by P. Sørensen. FAO Smallholder Poultry Production Paper No. 5. Rome (available at http://www.fao.org/docrep/013/al675e/al675e00.pdf).Google Scholar
FDREPCC (Federal Democratic Republic of Ethiopia Population Census Commission), 2008. Summary and statistical report of the 2007 population and housing census: Population size by age and sex. December 2008, Addis Ababa, Ethiopia (available at http://www.csa.gov.et/pdf/Cen2007_firstdraft.pdf) (accessed 1 May 2012).Google Scholar
Halima, H., Neser, F.W.C., van Marle-Koster, E. & de Kock, A. 2007. Phenotypic variation of native chicken populations in northwest Ethiopia. Tropical Animal Health and Production, 39: 507513.Google Scholar
Hume, T. 2011. Backyard chicken husbandry: Part 1. Companion Animal, 16(6): 4346.Google Scholar
Kingori, A.M., Wachira, A.M. & Tuitoek, J.K. 2010. Indigenous chicken production in Kenya: a review. International Journal of Poultry Science, 9(4): 309316.Google Scholar
McGibbon, W.H. 1979. Green shanks and adult mortality in chickens. Journal of Heredity, 70(1): 4446.CrossRefGoogle ScholarPubMed
Melesse, A. & Negesse, T. 2011. Phenotypic and morphological characterization of indigenous chicken populations in southern region of Ethiopia. Animal Genetic Resources, 49: 1931 (available at http://www.fao.org/docrep/014/ba0128t/ba0128t00.pdf).Google Scholar
Moges, F., Mellesse, A. & Dessie, T. 2010. Assessment of village chicken production system and evaluation of the productive and reproductive performance of local chicken ecotype in Bure district, north-west Ethiopia. African Journal of Agricultural Research, 5(13): 17391748.Google Scholar
Muchadeyi, F.C., Wollny, C.B.A., Eding, H., Weigend, S. & Simianer, H. 2009. Choice of breeding stock, preference of production traits and culling criteria of village chickens among Zimbabwe agro-ecological zones. Tropical Animal Health and Production, 41: 403412.CrossRefGoogle ScholarPubMed
Navara, K.J., Anderson, E.M. & Edwards, M.L. 2012. Combsize and color relate to sperm quality: a test of the phenotype-linked fertility hypothesis. Behavioral Ecology, 23(5): 10361041.Google Scholar
Nenadic, O. & Greenacre, M. 2007. Correspondence analysis in R, with two- and three-dimensional graphics: The ca Package. Journal of Statistical Software, 20(3): http://www.jstatsoft.org/v20/i03/ Google Scholar
Olawunmi, O.O., Salako, A.E. & Afuwape, A.A. 2008. Morphometric differentiation and assessment of function f the Fulani and Yoruba ecotype indigenous chickens of Nigeria. International Journal of Morphology, 26(4): 975980.Google Scholar
Orheruata, A.M., Adegite, A.V. & Okpeku, M. 2006. Morphological and egg characteristics of indigenous chicken in Edo State, Nigeria. Nigerian Agriculture Journal, 37: 114123.Google Scholar
Punnett, R.C. 1923. Heredity in poultry. London, Macmillan and Co. Google Scholar
R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.Google Scholar
SPSS. 2007. SPSS 16.0 for Windows User's Guide Release. SPSS Inc, Chicago.Google Scholar
Ssewannyana, E., Ssali, A., Kasadha, T., Dhikusooka, M., Kasoma, P., Kalema, J., Kwatotyo, B.A. & Aziku, L. 2008. On-farm characterization of indigenous chickens in Uganda. Journal of Animal and Plant Sciences, 1(2): 3337.Google Scholar
Vij, P.K., Tantia, M.S. & Vijh, R.K. 2006. Characterization of Punjab brown chicken. Animal Genetic Resources Information, 39: 6576.Google Scholar
Wang, Y., Gao, Y., Imsland, F., Gu, X., Feng, C., Liu, R., Song, C., Tixier-Boichard, M., Gourichon, D., Li, Q., Chen, K., Li, H., Andersson, L., Hu, X. & Li, N. 2012. The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PLoS ONE, 7(4): e34012.Google Scholar
Warren, D.C. 1928. Inheritance of earlobe color in poultry. Genetics, 13: 470487.Google Scholar
Wragg, D., Mwacharo, J.M., Alcalde, J.A., Hocking, P.M. & Hanotte, O. 2012. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens. Heredity, 109: 618.Google Scholar
Wright, D., Boije, H., Meadows, J.R.S., Bed'hom, B., Gourichon, D., Vieaud, A., Tixier-Boichard, M., Rubin, C-J., Imsland, F., Hallbook, F. & Andersson, L. 2009. Copy number variation in intron 1 of SOX5 causes the pea comb phenotype in chickens. PLoS Genetics, 5(6): e1000512.Google Scholar
Youssao, I.A.K., Tobada, P.C., Koutinhouin, B.G., Dahouda, M., Idrissou, N.D., Bonou, G.A., Tougan, U.P., Ahounou, S., Yapi-Gnaoré, V., Kayang, B., Rognon, X. & Tixier-Boichard, M. 2010. Phenotypic characterisation and molecular polymorphism of indigenous poultry populations of the species Gallus gallus of savannah and forest ecotypes of Benin. African Journal of Biotechnology, 9(3): 369381.Google Scholar