Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T07:10:00.898Z Has data issue: false hasContentIssue false

Perspectives on influenza evolution and the role of research

Published online by Cambridge University Press:  01 July 2010

Heather L. Forrest
Affiliation:
Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mailstop 330, Memphis, TN 38105-2794USA
Robert G. Webster*
Affiliation:
Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mailstop 330, Memphis, TN 38105-2794USA University of Tennessee, Memphis, TN, USA
*
*Corresponding author. E-mail: robert.webster@stjude.org

Abstract

Influenza is a highly contagious respiratory pathogen that continues to evolve and threaten both veterinary and human public health. Influenza A viruses are continually undergoing molecular changes through mutations, reassortment, and, in rare instances, recombination. While they generally cause benign enteric infection in their natural reservoir of wild aquatic birds, they can cause catastrophic and potentially lethal disease outbreaks in humans, domestic poultry, and pigs when they cross the host species barrier. The continuing circulation of highly pathogenic (HP) H5N1 influenza viruses in domestic poultry in parts of Eurasia and the emergence and global spread of pandemic H1N1 2009 are current examples of influenza evolution. The spread of both HP H5N1 and pandemic H1N1 to multiple hosts emphasizes the potential for continued evolution. In this review, we discuss the current understanding of influenza A virus structure and strategies of variation, with a specific focus on the HP H5N1 and pandemic H1N1 influenza viruses. Additionally, we attempt to identify the gaps in our knowledge of H5N1 and pandemic H1N1 influenza viruses. These gaps include (i) an understanding of the molecular determinants of influenza virus and the host that permit efficient transmissibility and pandemic potential, (ii) the urgent need for prospective surveillance in apparently healthy swine, (iii) the molecular determinants of high pathogenicity in poultry, pigs, and people, (iv) the genetic basis of host susceptibility, (v) antigenic variability, (vi) the use of vaccine to control influenza, (vii) the role of wild birds as the reservoir of highly pathogenic avian influenza, (viii) the problems with vaccines, (ix) seasonality, (x) co-infections, and (xi) anti-influenza drug resistance. Our failure to eradicate HP H5N1 globally and to explain why H5N1 does not transmit efficiently in humans while an H1N1 pandemic virus of swine origin spread globally in months are key examples that emphasize the critical need to bridge these knowledge gaps. Future directions in influenza research that will help us resolve each of the above-mentioned knowledge gaps include complete genomic and proteomic analysis of both the virus and the host with the prospect of designing new control strategies and the development of genetically resistant hosts.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

JrAldridge, JR, Moseley, CE, Boltz, DA, Negovetich, NJ, Reynolds, C, Franks, J, Brown, SA, Doherty, PC, Webster, RG and Thomas, PG (2009). TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proceedings of the National Academy of Sciences U S A 106: 53065311.CrossRefGoogle Scholar
Alexander, DJ (2000). A review of avian influenza in different bird species. Veterinary Microbiology 74: 313.Google Scholar
Alexander, DJ (2007). An overview of the epidemiology of avian influenza. Vaccine 25: 56375644.Google Scholar
Barber, MRW, Aldridge, JR, Webster, RG and Magor, KE (2010). Association of RIG-I with innate immunity of ducks to influenza. Proceedings of the National Academy of Sciences U S A 107: 59135918.Google Scholar
Boni, MF (2008). Vaccination and antigenic drift in influenza. Vaccine 26 (suppl. 3): C8C14.Google Scholar
Boni, MF, Zhou, Y, Taubenberger, JK and Holmes, EC (2008). Homologous recombination is very rare or absent in human influenza A virus. Journal of Virology 82: 48074811.Google Scholar
Boon, AC, deBeauchamp, J, Hollmann, A, Luke, J, Kotb, M, Rowe, S, Finkelstein, D, Neale, G, Lu, L, Williams, RW and Webby, RJ (2009). Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. Journal of Virology 83: 1041710426.Google Scholar
Bourmakina, SV and Garcia-Sastre, A (2003). Reverse genetics studies on the filamentous morphology of influenza A virus. Journal of General Virology 84: 517527.Google Scholar
Brookes, SM, Nunez, A, Choudhury, B, Matrosovich, M, Essen, SC, Clifford, D, Slomka, MJ, Kuntz-Simon, G, Garcon, F, Nash, B, Hanna, A, Heegaard, PM, Quéguiner, S, Chiapponi, C, Bublot, M, Garcia, JM, Gardner, R, Foni, E, Loeffen, W, Larsen, L, Van Reeth, K, Banks, J, Irvine, RM and Brown, IH (2010). Replication, pathogenesis and transmission of Pandemic (H1N1) 2009 Virus in non-immune pigs. PLoS One 5: e9068.Google Scholar
Bush, RM and Bender, CA, Subbarao, K, Cox, NJ and Fitch, WM (1999). Predicting the evolution of human influenza A. Science 286: 19211925.Google Scholar
Campitelli, L, Ciccozzi, M, Salemi, M, Taglia, F, Boros, S, Donatelli, I and Rezza, G (2006). H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997–2004). Journal of General Virology 87: 955960.Google Scholar
Carrat, F and Flahault, A (2007). Influenza vaccine: the challenge of antigenic drift. Vaccine 25: 68526862.CrossRefGoogle Scholar
Chen, GL and Subbarao, K (2009). Live attenuated vaccines for pandemic influenza. Current Topics in Microbiology and Immunology 333: 109132.Google Scholar
Chen, H (2009). H5N1 avian influenza in China. Science in China. Series C, Life sciences 52: 419427.Google Scholar
Chen, H, Deng, G, Li, Z, Tian, G, Li, Y, Jiao, P, Zhang, L, Liu, Z, Webster, RG and Yu, K (2004). The evolution of H5N1 influenza viruses in ducks in southern China. Proceedings of the National Academy of Sciences USA 101: 1045210457.CrossRefGoogle Scholar
Chen, H, Smith, GJ, Li, KS, Wang, J, Fan, XH, Rayner, JM, Vijaykrishna, D, Zhang, JX, Zhang, LJ, Guo, CT, Cheung, CL, Xu, KM, Duan, L, Huang, K, Qin, K, Leung, YH, Wu, WL, Lu, HR, Chen, Y, Xia, NS, Naipospos, TS, Yuen, KY, Hassan, SS, Bahri, S, Nguyen, TD, Webster, RG, Peiris, JS and Guan, Y (2006). Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proceedings of the National Academy of Sciences U S A 103: 28452850.Google Scholar
Chen, W, Calvo, PA, Malide, D, Gibbs, J, Schubert, U, Bacik, I, Basta, S, O'Neill, R, Schickli, J, Palese, P, Henklein, P, Bennink, JR and Yewdell, JW (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 7: 13061312.Google Scholar
Choi, YK, Ozaki, H, Webby, RJ, Webster, RG, Peiris, JS, Poon, L, Butt, C, Leung, YH and Guan, Y (2004). Continuing evolution of H9N2 influenza viruses in Southeastern China. Journal of Virology 78: 86098614.Google Scholar
Dawood, FS, Jain, S, Finelli, L, Shaw, MW, Lindstrom, S, Garten, RJ, Gubareva, LV, Xu, X, Bridges, CB and Uyeki, TM (2009). Emergence of a novel swine-origin influenza A (H1N1) virus in humans. New England Journal of Medicine 360: 26052615.Google Scholar
de Jong, JC, van Nieuwstadt, AP, Kimman, TG, Loeffen, WL, Bestebroer, TM, Bijlsma, K, Verweij, C, Osterhaus, AD and Class, EC (1999). Antigenic drift in swine influenza H3 haemagglutinins with implications for vaccination policy. Vaccine 17: 13211328.Google Scholar
Desselberger, U, Racaniello, VR, Zazra, JJ and Palese, P (1980). The 3′ and 5′-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8: 315328.Google Scholar
Domenech, J, Dauphin, G, Rushton, J, McGrane, J, Lubroth, J, Tripodi, A, Gilbert, J and Sims, LD (2009). Experiences with vaccination in countries endemically infected with highly pathogenic avian influenza: the Food and Agriculture Organization perspective. Revue scientifique et technique (International Office of Epizootics) 28: 293305.Google Scholar
Dominguez-Cherit, G, Lapinsky, SE, Macias, AE, Pinto, R, Espinosa-Perez, L, de la Torre, A, Poblano-Morales, M, Baltazar-Torres, JA, Bautista, E, Martinez, A, Martinez, MA, Rivero, E, Valdez, R, Ruiz-Palacios, G, Hernández, M, Stewart, TE and Fowler, RA (2009). Critically Ill patients with 2009 influenza A(H1N1) in Mexico. Journal of the American Medical Association 302: 18801887.Google Scholar
Duan, L, Bahl, J, Smith, GJ, Wang, J, Vijaykrishna, D, Zhang, LJ, Zhang, JX, Li, KS, Fan, XH, Cheung, CL, Huang, K, Poon, LL, Shortridge, KF, Webster, RG, Peiris, JS, Chen, H and Guan, Y (2008). The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology 380: 243254.Google Scholar
Ellis, TM, Bousfield, RB, Bissett, LA, Dyrting, KC, Luk, GS, Tsim, ST, Sturm-Ramirez, K, Webster, RG, Guan, Y and Malik Peiris, JS (2004). Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathology 33: 492505.Google Scholar
Ferguson, NM, Galvani, AP and Bush, RM (2003). Ecological and immunological determinants of influenza evolution. Nature 422: 428433.Google Scholar
Fouchier, RA, Osterhaus, AD and Brown, IH (2003). Animal influenza virus surveillance. Vaccine 21: 17541757.Google Scholar
Gack, MU, Albrecht, RA, Urano, T, Inn, KS, Huang, IC, Carnero, E, Farzan, M, Inoue, S, Jung, JU and García-Sastre, A (2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5: 439449.CrossRefGoogle ScholarPubMed
Garcia-Sastre, A, Egorov, A, Matassov, D, Brandt, S, Levy, DE, Durbin, JE, Palese, P and Muster, T (1998). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324330.Google Scholar
Garman, E and Laver, G (2005). The Structure, Function, and Inhibition of Influenza Virus Neuraminidase. In: Fischer, WB (ed.) Viral Membrane Proteins: Structure, Function, and Drug Design. New York: Plenum, pp. 247267.Google Scholar
Garten, RJ, Davis, CT, Russell, CA, Shu, B, Lindstrom, S, Balish, A, Sessions, WM, Xu, X, Skepner, E, Deyde, V, Okomo-Adhiambo, M, Gubareva, L, Barnes, J, Smith, CB, Emery, SL, Hillman, MJ, Rivailler, P, Smagala, J, de Graaf, M, Burke, DF, Fouchier, RA, Pappas, C, Alpuche-Aranda, CM, López-Gatell, H, Olivera, H, López, I, Myers, CA, Faix, D, Blair, PJ, Yu, C, Keene, KM, JrDotson, PD, Boxrud, D, Sambol, AR, Abid, SH, St George, K, Bannerman, T, Moore, AL, Stringer, DJ, Blevins, P, Demmler-Harrison, GJ, Ginsberg, M, Kriner, P, Waterman, S, Smole, S, Guevara, HF, Belongia, EA, Clark, PA, Beatrice, ST, Donis, R, Katz, J, Finelli, L, Bridges, CB, Shaw, M, Jernigan, DB, Uyeki, TM, Smith, DJ, Klimov, AI and Cox, NJ (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197201.Google Scholar
Ghendon, Y (1994). Introduction to pandemic influenza through history. European Journal of Epidemiology 10: 451453.Google Scholar
Gibbs, JS, Malide, D, Hornung, F, Bennink, JR and Yewdell, JW (2003). The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. Journal of Virology 77: 72147224.Google Scholar
Gorman, OT, Bean, WJ and Webster, RG (1992). Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Current Topics in Microbiology and Immunology 176: 7597.Google Scholar
Guan, Y, Smith, GJ, Webby, R and Webster, RG (2009). Molecular epidemiology of H5N1 avian influenza. Revue scientifique et technique (International Office of Epizootics) 28: 3947.Google Scholar
Guo, YJ, Jin, FG, Wang, P, Wang, M and Zhu, JM (1983). Isolation of influenza C virus from pigs and experimental infection of pigs with influenza C virus. Journal of General Virology 64: 177182.Google ScholarPubMed
Harder, TC and Vahlenkamp, TW (2010). Influenza virus infections in dogs and cats. Veterinary Immunology and Immunopathology 134: 5460.Google Scholar
Hay, AJ, Gregory, V, Douglas, AR and Lin, YP (2001). The evolution of human influenza viruses. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 356: 18611870.Google Scholar
He, CQ, Han, GZ, Douglas, AR and Lin, YP (2008). Homologous recombination evidence in human and swine influenza A viruses. Virology 380: 1220.Google Scholar
He, CQ, Xie, ZX, Han, GZ, Dong, JB, Wang, D, Liu, JB, Ma, LY, Tang, XF, Liu, XP, Pang, YS and Li, GR (2009). Homologous recombination as an evolutionary force in the avian influenza A virus. Molecular Biology and Evolution 26: 177187.Google Scholar
Hoffmann, E, Stech, J, Guan, Y, Webster, RG and Perez, DR (2001). Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology 146: 22752289.Google Scholar
Horimoto, T and Kawaoka, Y (2001). Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews 14: 129149.Google Scholar
Iamnikova, SS, Gambarian, AS, Aristova, VA, L'vov, DK, Lomakina, NF, Munster, V, Lexmond, P and Foucher, RA (2009). A/H13 and A/H16 influenza viruses: different lines of one precursors. Voprosy Virusologii 54: 1018.Google Scholar
Kash, JC, Tumpey, TM, Proll, SC, Carter, V, Perwitasari, O, Thomas, MJ, Basler, CF, Palese, P, Taubenberger, JK, García-Sastre, A, Swayne, DE and Katze, MG (2006). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443: 578581.Google Scholar
Kendal, AP, Noble, GR, Skehel, JJ and Dowdle, WR (1978). Antigenic similarity of influenza A (H1N1) viruses from epidemics in 1977–1978 to “Scandinavian” strains isolated in epidemics of 1950–1951. Virology 89: 632636.Google Scholar
Khatchikian, D, Orlich, M and Roitt, R (1989). Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340: 156157.Google Scholar
Kim, YH, Kim, HS, Cho, SH and Seo, SH (2009). Influenza B virus causes milder pathogenesis and weaker inflammatory responses in ferrets than influenza A virus. Viral Immunology 22: 423430.Google Scholar
Kishida, N, Sakoda, Y, Eto, M, Sunaga, Y and Kida, H (2004). Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Archives of Virology 149: 20952104.Google Scholar
Kobasa, D, Jones, SM, Shinya, K, Kash, JC, Copps, J, Ebihara, H, Hatta, Y, Kim, JH, Halfmann, P, Hatta, M, Feldmann, F, Alimonti, JB, Fernando, L, Li, Y, Katze, MG, Feldmann, H and Kawaoka, Y (2007). Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319323.Google Scholar
Lamb, RA (1989). Genes and proteins of the influenza viruses. In: Krug, RM, Fraenkel-Conrat, H and Wagner, RR (eds) The Influenza Viruses. New York: Plenum Press, pp. 188.Google Scholar
Lee, JH, Pascua, PN, Song, MS, Baek, YH, Kim, CJ, Choi, HW, Sung, MH, Webby, RJ, Webster, RG, Poo, H and Choi, YK (2009). Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. Journal of Virology 83: 42054215.Google Scholar
Li, C, Yu, K, Tian, G, Yu, D, Liu, L, Jing, B, Ping, J and Chen, H (2005). Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340: 7083.Google Scholar
Li, KS, Xu, KM, Peiris, JS, Poon, LL, Yu, KZ, Yuen, KY, Shortridge, KF, Webster, RG and Guan, Y (2003). Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans? Journal of Virology 77: 69886994.Google Scholar
Lipsitch, M and Viboud, C (2009). Influenza seasonality: lifting the fog. Proceedings of the National Academy of Sciences U S A 106: 36453646.Google Scholar
Makarova, NV, Ozaki, H, Kida, H, Webster, RG and Perez, DR (2003). Replication and transmission of influenza viruses in Japanese quail. Virology 310: 815.Google Scholar
Peiris, JS (2009). Avian influenza viruses in humans. Revue scientifique et technique (International Office of Epizootics) 28: 161173.Google Scholar
Manuguerra, JC and Hannoun, C (1992). Natural infection of dogs by influenza C virus. Research in Virology 143: 199204.Google Scholar
Manuguerra, JC, Zientara, S, Sailleau, C, Rousseaux, C, Gicquel, B, Rijks, I and van der Werf, S (2000). Evidence for evolutionary stasis and genetic drift by genetic analysis of two equine influenza H3 viruses isolated in France. Veterinary Microbiology 74: 5970.Google Scholar
Matrosovich, M, Stech, J and Klenk, HD (2009). Influenza receptors, polymerase and host range. Revue scientifique et technique (International Office of Epizootics) 28: 203217.Google Scholar
Matsuzaki, Y, Katsushima, N, Nagai, Y, Shoji, M, Itagaki, T, Sakamoto, M, Kitaoka, S, Mizuta, K and Nishimura, H (2006). Clinical features of influenza C virus infection in children. Journal of Infectious Diseases 193: 12291235.Google Scholar
McCullers, JA (2006). Insights into the interaction between influenza virus and pneumococcus. Clinical Microbiology Reviews 19: 571582.Google Scholar
McHardy, AC and Adams, B (2009). The role of genomics in tracking the evolution of influenza A virus. PLoS Pathogens 5: e1000566.Google Scholar
Mehle, A and Doudna, JA (2009). Adaptive strategies of the influenza virus polymerase for replication in humans. Proceedings of the National Academy of Sciences USA 106: 2131221316.Google Scholar
Monto, AS (2003). The role of antivirals in the control of influenza. Vaccine 21: 17961800.Google Scholar
Monto, AS (2008). Epidemiology of influenza. Vaccine 26 (suppl. 4): D45D48.Google Scholar
Morens, DM, Taubenberger, JK and Fauci, AS (2009). The persistent legacy of the 1918 influenza virus. New England Journal of Medicine 361: 225229.Google Scholar
Munster, VJ and Fouchier, RA (2009). Avian influenza virus: of virus and bird ecology. Vaccine 27: 6340–5344.Google Scholar
Myers, KP, Olsen, CW and Gray, GC (2007). Cases of swine influenza in humans: a review of the literature. Clinical Infectious Diseases 44: 10841088.CrossRefGoogle Scholar
Nelson, MI and Holmes, EC (2007). The evolution of epidemic influenza. Nature Reviews Genetics 8: 196205.Google Scholar
Neumann, G, Noda, T and Kawaoka, Y (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931939.Google Scholar
Nielsen, O, Clavijo, A and Broughen, JA (2001). Serologic evidence of influenza A infection in marine mammals of arctic Canada. Journal of Wildlife Diseases 37: 820825.Google Scholar
Nobusawa, E, Aoyama, T, Kato, H, Suzuki, Y, Tateno, Y and Nakajima, K (1991). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182: 475485.Google Scholar
O'Neill, RE, Talon, J and Palese, P (1998). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO Journal 17: 288296.Google Scholar
Olsen, SJ, Ungchusak, K, Sovann, L, Uyeki, TM, Dowell, SF, Cox, NJ, Aldis, W and Chunsuttiwat, S (2005). Family clustering of avian influenza A (H5N1). Emerging Infectious Diseases 11: 17991801.Google Scholar
Orlich, M, Gottwald, H and Rott, R (1994). Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204: 462465.Google Scholar
Osterhaus, AD, Rimmelzwaan, GF, Martina, BE, Bestebroer, TM and Fouchier, RA (2000). Influenza B virus in seals. Science 288: 10511053.Google Scholar
Palese, P and Young, JF (1982). Variation of influenza A, B, and C viruses. Science 215: 14681474.Google Scholar
Peiris, JS, Cheung, CY, Leung, CY and Nicholls, JM (2009). Innate immune responses to influenza A H5N1: friend or foe? Trends in Immunology 30: 574584.Google Scholar
Peiris, JS, de Jong, MD and Guan, Y (2007). Avian influenza virus (H5N1): a threat to human health. Clinical Microbiology Reviews 20: 243267.Google Scholar
Perez-Padilla, R, de la Rosa-Zamboni, D, Ponce de Leon, S, Hernandez, M, Quiñones-Falconi, F, Bautista, E, Ramirez-Venegas, A, Rojas-Serrano, J, Ormsby, CE, Corrales, A, Higuera, A, Mondragon, E, Cordova-Villalobos, JA; INER Working Group on Influenza (2009). Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. New England Journal of Medicine 361: 680689.Google Scholar
Portela, A and Digard, P (2002). The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology 83: 723734.Google Scholar
Rappuoli, R, Medini, D, Siena, E, Budroni, S, Dormitzer, PR and Del Giudice, G (2010). Building an insurance against modern pandemics. Current Opinion in Investigational Drugs 11: 126130.Google Scholar
Reed, C, Angulo, FJ, Swerdlow, DL, Lipsitch, M, Meltzer, MI, Jernigan, D and Finelli, L (2009). Estimates of the prevalence of pandemic (H1N1) 2009, United States, April-July 2009. Emerging Infectious Diseases 15: 20042007.Google Scholar
Reid, AH and Taubenberger, JK (2003). The origin of the 1918 pandemic influenza virus: a continuing enigma. Journal of General Virology 84: 22852292.Google Scholar
Reperant, LA, Rimmelzwaan, GF and Kuiken, T (2009). Avian influenza viruses in mammals. Revue scientifique et technique (International Office of Epizootics) 28: 137159.Google Scholar
Russell, RJ, Kerry, PS, Stevens, DJ, Steinhauer, DA, Martin, SR, Gamblin, SJ and Skehel, JJ (2008). Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proceedings of the National Academy of Sciences USA 105: 1773617741.Google Scholar
Salomon, R, Staeheli, P, Kochs, G, Yen, HL, Franks, J, Rehg, JE, Webster, RG and Hoffmann, E (2007). Mx1 gene protects mice against the highly lethal human H5N1 influenza virus. Cell Cycle 6: 24172421.Google Scholar
Salzberg, SL, Kingsford, C, Cattoli, G, Spiro, DJ, Janies, DA, Aly, MM, Brown, IH, Couacy-Hymann, E, De Mia, GM, Dung do, H, Guercio, A, Joannis, T, Maken Ali, AS, Osmani, A, Padalino, I, Saad, MD, Savić, V, Sengamalay, NA, Yingst, S, Zaborsky, J, Zorman-Rojs, O, Ghedin, E and Capua, I (2007). Genome analysis linking recent European and African influenza (H5N1) viruses. Emerging Infectious Diseases 13: 713718.Google Scholar
Scholtissek, C (1979). The genes coding for the surface glycoproteins of influenza A viruses contain a small conserved and a large variable region. Virology 93: 594597.Google Scholar
Scholtissek, C (1990). Pigs as ‘mixing vessels’ for the creation of new pandemic influenza A viruses. Medical Principles and Practice 2: 6571.Google Scholar
Smith, DJ, Lapedes, AS, de Jong, JC, Bestebroer, TM, Rimmelzwaan, GF, Osterhaus, AD and Fouchier, RA (2004). Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371376.Google Scholar
Smith, FI and Palese, P (1989). Variation in influenza virus genes. In: Krug, RM (ed.) The Influenza Viruses. New York: Plenum Press, pp. 319359.Google Scholar
Smith, GJ, Bahl, J, Vijaykrishna, D, Zhang, J, Poon, LL, Chen, H, Webster, RG, Peiris, JS and Guan, Y (2009a). Dating the emergence of pandemic influenza viruses. Proceedings of the National Academy of Sciences USA 106: 1170911712.Google Scholar
Smith, GJ, Vijaykrishna, D, Bahl, J, Lycett, SJ, Worobey, M, Pybus, OG, Ma, SK, Cheung, CL, Raghwani, J, Bhatt, S, Peiris, JS, Guan, Y and Rambaut, A (2009b). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 11221125.Google Scholar
Sponseller, BA, Strait, E, Jergens, A, Trujillo, J, Harmon, K, Koster, L, Jenkins-Moore, M, Killian, M, Swenson, S, Bender, H, Waller, K, Miles, K, Pearce, T, Yoon, KJ and Nara, P (2010). Influenza A pandemic (H1N1) 2009 virus infection in domestic cat. Emerging Infectious Diseases 16: 534537.Google Scholar
Suarez, DL, Senne, DA, Banks, J, Brown, IH, Essen, SC, Lee, CW, Manvell, RJ, Mathieu-Benson, C, Moreno, V, Pedersen, JC, Panigrahy, B, Rojas, H, Spackman, E and Alexander, DJ (2004). Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerging Infectious Diseases 10: 693699.CrossRefGoogle ScholarPubMed
Swayne, DE and Kapczynski, DR (2008). Vaccines, vaccination, and immunology for avian influenza viruses in poultry. In: Swayne, DE (ed.) Avian influenza. Ames: Blackwell Publishing, pp. 407451.Google Scholar
Swayne, DE and Pantin-Jackwood, M (2008). Pathobiology of avian influenza virus infections in birds and mammals. In: Swayne, DE (ed.) Avian Influenza. Ames: Blackwell Publishing, pp. 87122.Google Scholar
Swayne, DE and Suarez, DL (2000). Highly pathogenic avian influenza. Revue scientifique et technique (International Office of Epizootics) 19: 463482.Google Scholar
Taubenberger, JK, Hultin, JV and Morins, DM (2007). Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antiviral Therapy 12 (4 Pt B): 581591.Google Scholar
Taubenberger, JK and Morens, DM (2006). 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases 12: 1522.Google Scholar
Taubenberger, JK, Reid, AH, Krafft, AE, Bijwaard, KE and Fanning, TG (1997). Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275: 17931796.Google Scholar
Treanor, J (2004). Influenza vaccine–outmaneuvering antigenic shift and drift. New England Journal of Medicine 350: 218220.Google Scholar
Tumpey, TM, Basler, CF, Van Hoeven, N, Katz, JM, Kochs, G, Haller, O, García-Sastre, A and Staeheli, P (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 7780.Google Scholar
Tumpey, TM, Szretter, KJ, Van Hoeven, N, Katz, JM, Kochs, G, Haller, O, García-Sastre, A and Staeheli, P (2007). The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. Journal of Virology 81: 1081810821.Google Scholar
Van Reeth, K (2007). Avian and swine influenza viruses: our current understanding of the zoonotic risk. Veterinary Research 38: 243260.Google Scholar
Vijaykrishna, D, Bahl, J, Riley, S, Duan, L, Zhang, JX, Chen, H, Peiris, JS, Smith, GJ and Guan, Y (2008). Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathogens 4: e1000161.Google Scholar
Wan, H, Sorrell, EM, Song, H, Hossain, MJ, Ramirez-Nieto, G, Monne, I, Stevens, J, Cattoli, G, Capua, I, Chen, LM, Donis, RO, Busch, J, Paulson, JC, Brockwell, C, Webby, R, Blanco, J, Al-Natour, MQ and Perez, DR (2008). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One 3: e2923.Google Scholar
Webster, RG (2004). Wet markets – a continuing source of severe acute respiratory syndrome and influenza? Lancet 363: 234236.Google Scholar
Webster, RG, Bean, WJ, Gorman, OT, Chambers, TM and Kawaoka, Y (1992). Evolution and ecology of influenza A viruses. Microbiological Reviews 56: 152179.Google Scholar
Webster, RG and Hulse, DJ (2004). Microbial adaptation and change: avian influenza. Revue scientifique et technique (International Office of Epizootics) 23: 453465.Google Scholar
Webster, RG, Peiris, M, Chen, H and Guan, Y (2006). H5N1 outbreaks and enzootic influenza. Emerging Infectious Diseases 12: 38.Google Scholar
White, NJ, Webster, RG, Govorkova, EA and Uyeki, TM (2009). What is the optimal therapy for patients with H5N1 influenza? PLoS Medicine 6: e1000091.Google Scholar
WHO (2009). Continuing progress towards a unified nomenclature system for the highly pathogenic H5N1 avian influenza viruses. Available online at http://www.who.int/csr/disease/avian_influenza/guidelines/nomenclature/en/index.htmlGoogle Scholar
WHO (2010a). Recommendations for Influenza Vaccines. Available online at http://www.who.int/csr/disease/influenza/vaccinerecommendations/en/index.htmlGoogle Scholar
WHO (2010b). Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO. Available online at http://www.who.int/csr/disease/avian_influenza/country/cases_table_2010_02_10/en/index.html.Google Scholar
WHO/OIE/FAO (2008). Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases 14: e1.Google Scholar
Wimmer, E, Mueller, S, Tumpey, TM and Taubenberger, JK (2009). Synthetic viruses: a new opportunity to understand and prevent viral disease. Nature Biotechnology 27: 11631172.Google Scholar
Wolf, YI, Viboud, C, Holmes, EC, Koonin, EV and Lipman, DJ (2006). Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biology Direct 1: 34.Google Scholar
Wuethrich, B (2003). Infectious disease. An avian flu jumps to people. Science 299: 1504.Google Scholar
Xu, KM, Li, KS, Smith, GJ, Li, JW, Tai, H, Zhang, JX, Webster, RG, Peiris, JS, Chen, H and Guan, Y (2007). Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. Journal of Virology 81: 26352645.Google Scholar
Yen, HL, Guan, Y, Peiris, M and Webster, RG (2008). H5N1 in Asia. In: Klenk, HD, Matrosovich, MN and Stech, J (eds) Monographs in Virology: Avian Influenza. Switzerland: S. Karger AG, pp. 1126.Google Scholar
Yen, HL and Webster, RG (2009). Pandemic influenza as a current threat. Current Topics in Microbiology and Immunology 333: 324.Google Scholar
Zhou, NN, Senne, DA, Landgraf, JS, Swenson, SL, Erickson, G, Rossow, K, Liu, L, Yoon, K, Krauss, S and Webster, RG (1999). Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. Journal of Virology 73: 88518856.Google Scholar
Zimmer, SM and Burke, DS (2009). Historical perspective – Emergence of influenza A (H1N1) viruses. New England Journal of Medicine 361: 279285.Google Scholar