Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T04:23:04.818Z Has data issue: false hasContentIssue false

Recent advances in the use of bacterial probiotics in animal production

Published online by Cambridge University Press:  11 December 2023

Alberto Gonçalves Evangelista*
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
Jessica Audrey Feijó Corrêa
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
Anne Caroline Marques Schoch Pinto
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
Francieli Dalvana Ribeiro Gonçalves
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
Fernando Bittencourt Luciano*
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
*
Corresponding authors: Alberto Gonçalves Evangelista; Email: alberto.evangelista@pucpr.edu.br; Fernando Bittencourt Luciano; Email: fernando.luciano@pucpr.br
Corresponding authors: Alberto Gonçalves Evangelista; Email: alberto.evangelista@pucpr.edu.br; Fernando Bittencourt Luciano; Email: fernando.luciano@pucpr.br

Abstract

Animal husbandry is increasingly under pressure to meet world food demand. Thus, strategies are sought to ensure this productivity increment. The objective of this review was to gather advances in the use of bacterial probiotics in animal production. Lactobacilli correspond to the most used bacterial group, with several beneficial effects already reported and described, as well as the Enterococcus and Pediococcus genera – being the latter expressively used in aquaculture. Research on the Bifidobacterium genus is mostly focused on human health, which demonstrates great effects on blood biochemical parameters. Such results sustain the possibility of expanding its use in veterinary medicine. Other groups commonly assessed for human medicine but with prospective expansion to animal health are the genera Leuconostoc and Streptococcus, which have been demonstrating interesting effects on the prevention of viral diseases, and in dentistry, respectively. Although bacteria from the genera Bacillus and Lactococcus also have great potential for use in animal production, a complete characterization of the candidate strain must be previously made, due to the existence of pathogenic and/or spoilage variants. It is noteworthy that a growing number of studies have investigated the genus Propionibacterium, but still in very early stages. However, the hitherto excellent results endorse its application. In this way, in addition to the fact that bacterial probiotics represent a promising approach to promote productivity increase in animal production, the application of other strains than the traditionally employed genera may allow the exploitation of novel mechanisms and enlighten unexplored possibilities.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelhamid, AG, El-Masry, SS and El-Dougdoug, NK (2019) Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA Journal 10, 337350.CrossRefGoogle ScholarPubMed
Abdel-Moneim, A-ME, Selim, DA, Basuony, HA, Sabic, EM, Saleh, AA and Ebeid, TA (2020) Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production 52, 671680.CrossRefGoogle ScholarPubMed
Abdolalipour, E, Mahooti, M, Salehzadeh, A, Torabi, A, Mohebbi, SR, Gorji, A and Ghaemi, A (2020) Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microbial Pathogenesis 145, 104207.CrossRefGoogle ScholarPubMed
Abudabos, AM, Ali, MH, Nassan, MA and Saleh, AA (2019) Ameliorative effect of Bacillus subtilis on growth performance and intestinal architecture in broiler infected with Salmonella. Animals 9, 190.CrossRefGoogle ScholarPubMed
Adel, M, El-Sayed, A-FM, Yeganeh, S, Dadar, M and Giri, SS (2017 a) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics and Antimicrobial Proteins 9, 150156.CrossRefGoogle ScholarPubMed
Adel, M, Yeganeh, S, Dawood, MAO, Safari, R and Radhakrishnan, S (2017 b) Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquaculture Nutrition 23, 14011409.CrossRefGoogle Scholar
Advisory Committee on Dangerous Pathogens (2013) The approved list of biological agents.Google Scholar
Ahmadifar, E, Sadegh, TH, Dawood, MAO, Dadar, M and Sheikhzadeh, N (2020) The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture 516, 734656.CrossRefGoogle Scholar
Aljumaah, MR, Alkhulaifi, MM, Abudabos, AM, Aljumaah, RS, Alsaleh, AN and Stanley, D (2020) Bacillus subtilis PB6 based probiotic supplementation plays a role in the recovery after the necrotic enteritis challenge. PLoS ONE 15, e0232781.CrossRefGoogle Scholar
Amenyogbe, E, Chen, G, Wang, Z, Huang, J, Huang, B and Li, H (2020) The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquaculture International 28, 10171041.CrossRefGoogle Scholar
Andersson, MA, Hakulinen, P, Honkalampi-Hämäläinen, U, Hoornstra, D, Lhuguenot, J-C, Mäki-Paakkanen, J, Savolainen, M, Severin, I, Stammati, A-L, Turco, L, Weber, A, von Wright, A, Zucco, F and Salkinoja-Salonen, M (2007) Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 49, 351367.CrossRefGoogle ScholarPubMed
Aoki, R, Kamikado, K, Suda, W, Takii, H, Mikami, Y, Suganuma, N, Hattori, M and Koga, Y (2017) A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports 7, 43522.CrossRefGoogle ScholarPubMed
Ayichew, T, Belete, A, Alebachew, T, Tsehaye, H, Berhanu, H and Minwuyelet, A (2017) Bacterial probiotics their importances and limitations: a review. Journal of Nutrition and Health Sciences 4, 18.Google Scholar
Bae, J-Y, Kim, JIL, Park, S, Yoo, K, Kim, I-H, Joo, W, Ryu, BH, Park, MS, Lee, I and Park, M-S (2018) Effects of Lactobacillus plantarum and Leuconostoc mesenteroides probiotics on human seasonal and avian influenza viruses. Journal of Microbiology and Biotechnology 28, 893901.CrossRefGoogle ScholarPubMed
Barba-Vidal, E, Castillejos, L, López-Colom, P, Rivero Urgell, M, Moreno Muñoz, JA and Martín-Orúe, SM (2017) Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Frontiers in Microbiology 8, e533.CrossRefGoogle Scholar
Benbara, T, Lalouche, S, Drider, D and Bendali, F (2020) Lactobacillus plantarum S27 from chicken faeces as a potential probiotic to replace antibiotics: in vivo evidence. Beneficial Microbes 11, 163173.CrossRefGoogle ScholarPubMed
Bidossi, A, De Grandi, R, Toscano, M, Bottagisio, M, De Vecchi, E, Gelardi, M and Drago, L (2018) Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infectious Diseases 18, 653.CrossRefGoogle ScholarPubMed
Bordin, T, Pilotto, F, Pesenatto, D, de Mendonça, BS, Daroit, L, Rodrigues, LB, dos Santos, ED and Dickel, EL (2021) Performance of broiler chicken submitted to a quantitative feed restriction program. Tropical Animal Health and Production 53, 87.CrossRefGoogle ScholarPubMed
Castillo, AJR, Florido, GM, Chávez, FA, Fernández, LMS, Ramón Bocourt, S, Silva, ML, Oliva, MR and Quintana, MP (2018) Efecto probiótico de Lactobacillus salivarius en indicadores microbiológicos e inmunológicos en pollos. Revista de la Sociedad Venezolana de Microbiología 38, 2126.Google Scholar
Chang-Liao, W-P, Lee, A, Chiu, Y-H, Chang, H-W and Liu, J-R (2020) Isolation of a Leuconostoc mesenteroides strain with anti-porcine epidemic diarrhea virus activities from kefir grains. Frontiers in Microbiology 11, e1578.CrossRefGoogle ScholarPubMed
Corrêa, JAF, Evangelista, AG, de Nazareth, TM and Luciano, FB (2019) Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 8, 100494.CrossRefGoogle Scholar
Danielski, GM, Evangelista, AG, Luciano, FB and de Macedo, REF (2022) Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Critical Reviews in Food Science and Nutrition 62, 11051118.CrossRefGoogle ScholarPubMed
Deng, KD, Xiao, Y, Ma, T, Tu, Y, Diao, QY, Chen, YH and Jiang, JJ (2018) Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Animal Feed Science and Technology 241, 3844.CrossRefGoogle Scholar
Deng, B, Wang, L, Ma, Q, Yu, T, Liu, D, Dai, Y and Zhao, G (2021) Genomics analysis of Bacillus megaterium 1259 as a probiotic and its effects on performance in lactating dairy cows. Animals 11, 397.CrossRefGoogle ScholarPubMed
Ding, S, Wang, Y, Yan, W, Li, A, Jiang, H and Fang, J (2019) Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge. PLoS ONE 14, e0212079.CrossRefGoogle ScholarPubMed
Divya, JB, Varsha, KK, Nampoothiri, KM, Ismail, B and Pandey, A (2012) Probiotic fermented foods for health benefits. Engineering in Life Sciences 12, 377390.CrossRefGoogle Scholar
do Carmo, FLR, Rabah, H, De Oliveira Carvalho, RD, Gaucher, F, Cordeiro, BF, da Silva, SH, Le Loir, Y, Azevedo, V and Jan, G (2018) Extractable bacterial surface proteins in probiotic–host interaction. Frontiers in Microbiology 9, e645.CrossRefGoogle ScholarPubMed
Du, R, Jiao, S, Dai, Y, An, J, Lv, J, Yan, X, Wang, J and Han, B (2018) Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in Microbiology 9, e2006.CrossRefGoogle ScholarPubMed
Duranti, S, Lugli, GA, Viappiani, A, Mancabelli, L, Alessandri, G, Anzalone, R, Longhi, G, Milani, C, Ossiprandi, MC, Turroni, F and Ventura, M (2020) Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov. International Journal of Systematic and Evolutionary Microbiology 70, 22882297.CrossRefGoogle Scholar
Elisashvili, V, Kachlishvili, E and Chikindas, ML (2019) Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics and Antimicrobial Proteins 11, 731747.CrossRefGoogle ScholarPubMed
Elsabagh, M, Mohamed, R, Moustafa, EM, Hamza, A, Farrag, F, Decamp, O, Dawood, MAO and Eltholth, M (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition 24, 16131622.CrossRefGoogle Scholar
Esteban-Fernández, A, Ferrer, MD, Zorraquín-Peña, I, López-López, A, Moreno-Arribas, MV and Mira, A (2019) In vitro beneficial effects of Streptococcus dentisani as potential oral probiotic for periodontal diseases. Journal of Periodontology 90, 13461355.CrossRefGoogle ScholarPubMed
Evangelista, AG and Luciano, FB (2021) Presença de Salmonella spp. na produção animal e o uso de fermentados bacterianos na mitigação de riscos – revisão de literatura. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 24, 17.CrossRefGoogle Scholar
Evangelista, AG, Corrêa, JAF, Pinto, ACSM and Luciano, FB (2021 a) The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance – a review. Critical Reviews in Food Science and Nutrition 62, 117.Google ScholarPubMed
Evangelista, AG, Corrêa, JAF, dos Santos, JVG, Matté, EHC, Milek, MM, Biauki, GC, Costa, LB and Luciano, FB (2021 b) Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro. Microbiology 167, e1102.CrossRefGoogle ScholarPubMed
Evivie, SE, Huo, G-C, Igene, JO and Bian, X (2017) Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food & Nutrition Research 61, 1318034.CrossRefGoogle ScholarPubMed
Fathi, M, Al-Homidan, I, Al-Dokhail, A, Ebeid, T, Abou-Emera, O and Alsagan, A (2018) Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response and egg quality characteristics in laying hens under high ambient temperature. Italian Journal of Animal Science 17, 804814.CrossRefGoogle Scholar
Feng, J, Chang, X, Zhang, Y, Yan, X, Zhang, J and Nie, G (2019) Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish & Shellfish Immunology 93, 7381.CrossRefGoogle ScholarPubMed
Fijan, S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. International Journal of Environmental Research and Public Health 11, 47454767.CrossRefGoogle ScholarPubMed
Ghasemzadeh, J, Saljughi, ZS, Akbary, P and Hasani, M (2018) Effects of dietary probiotic, Lactococcus lactis ‘subspecies PTCC 1403’ on the growth parameters and survival rate of grey mullet (Mugil cephalus L.) against Lactococcus garvieae bacteria. Journal of Animal Environment 10, 367374.Google Scholar
Haines, MD, Parker, HM, McDaniel, CD and Kiess, AS (2015) When rooster semen is exposed to Lactobacillus fertility is reduced. International Journal of Poultry Science 14, 541547.CrossRefGoogle Scholar
Halimi, M, Alishahi, M, Abbaspour, MR, Ghorbanpoor, M and Tabandeh, MR (2020) High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 99, 505513.CrossRefGoogle ScholarPubMed
Hanczakowska, E, Świątkiewicz, M, Natonek-Wiśniewska, M and Okoń, K (2017) Effect of glutamine and/or probiotic (Enterococcus faecium) feed supplementation on piglet performance, intestines structure, and antibacterial activity. Czech Journal of Animal Science 62, 313322.CrossRefGoogle Scholar
Hidayat, MN, Malaka, R, Agustina, L and Pakiding, W (2016) Abdominal fat percentage and carcass quality of broiler given probiotics Bacillus spp. Scientific Research Journal IV, 3337.Google Scholar
Humphreys, GJ and McBain, AJ (2019) Antagonistic effects of Streptococcus and Lactobacillus probiotics in pharyngeal biofilms. Letters in Applied Microbiology 68, 303312.CrossRefGoogle ScholarPubMed
Jacquier, V, Nelson, A, Jlali, M, Rhayat, L, Brinch, KS and Devillard, E (2019) Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science 98, 25482554.CrossRefGoogle ScholarPubMed
Jang, HR, Park, H-J, Kang, D, Chung, H, Nam, MH, Lee, Y, Park, J-H and Lee, H-Y (2019) A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Experimental & Molecular Medicine 51, 114.Google ScholarPubMed
Jaramillo-Torres, A, Rawling, MD, Rodiles, A, Mikalsen, HE, Johansen, L-H, Tinsley, J, Forberg, T, Aasum, E, Castex, M and Merrifield, DL (2019) Influence of dietary supplementation of probiotic Pediococcus acidilactici MA18/5M during the transition from freshwater to seawater on intestinal health and microbiota of Atlantic salmon (Salmo salar L.). Frontiers in Microbiology 10, e2243.CrossRefGoogle ScholarPubMed
Jatobá, A, Moraes, KN, Rodrigues, EF, Vieira, LM and Pereira, MO (2018) Frequency in the supply of Lactobacillus influence its probiotic effect for yellow tail lambari. Ciência Rural 48, e20180042.CrossRefGoogle Scholar
Jazi, V, Foroozandeh, AD, Toghyani, M, Dastar, B, Rezaie Koochaksaraie, R and Toghyani, M (2018) Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poultry Science 97, 20342043.CrossRefGoogle ScholarPubMed
Joysowal, M, Saikia, BN, Dowarah, R, Tamuly, S, Kalita, D and Choudhury, KBD (2018) Effect of probiotic Pediococcus acidilactici FT28 on growth performance, nutrient digestibility, health status, meat quality, and intestinal morphology in growing pigs. Veterinary World, 16691676.CrossRefGoogle ScholarPubMed
Keerqin, C, Rhayat, L, Zhang, Z-H, Gharib-Naseri, K, Kheravii, SK, Devillard, E, Crowley, TM and Wu, S-B (2021) Probiotic Bacillus subtilis 29,784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition. Poultry Science 100, 100981.CrossRefGoogle Scholar
Kiess, AS, Hirai, JH, Triplett, MD, Parker, HM and McDaniel, CD (2016) Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations. Poultry Science 95, 19341938.CrossRefGoogle ScholarPubMed
Lauková, A, Pogány Simonová, M, Chrastinová, Ľ, Kandričáková, A, Ščerbová, J, Plachá, I, Čobanová, K, Formelová, Z, Ondruška, Ľ, Štrkolcová, G and Strompfová, V (2017 a) Beneficial effect of bacteriocin-producing strain Enterococcus durans ED 26E/7 in model experiment using broiler rabbits. Czech Journal of Animal Science 62, 168177.CrossRefGoogle Scholar
Laukova, A, Pogany Simonova, M, Kubasova, I, Gancarcikova, S, Placha, I, Scerbova, J, Revajova, V, Herich, R, Levkut Sn, M and Strompfova, V (2017 b) Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech Journal of Animal Science 62, 491500.CrossRefGoogle Scholar
Lauková, A, Styková, E, Kubašová, I, Strompfová, V, Gancarčíková, S, Plachá, I, Miltko, R, Belzecki, G, Valocký, I and Pogány Simonová, M (2020) Enterocin M-producing Enterococcus faecium CCM 8558 demonstrating probiotic properties in horses. Probiotics and Antimicrobial Proteins 12, 15551561.CrossRefGoogle ScholarPubMed
Le, B and Yang, S-H (2019) Effect of potential probiotic Leuconostoc mesenteroides FB111 in prevention of cholesterol absorption by modulating NPC1L1/PPARα/SREBP-2 pathways in epithelial Caco-2 cells. International Microbiology 22, 279287.CrossRefGoogle ScholarPubMed
Lee, S, Katya, K, Park, Y, Won, S, Seong, M, Hamidoghli, A and Bai, SC (2017) Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish & Shellfish Immunology 61, 201210.CrossRefGoogle ScholarPubMed
Liang, X, He, J, Zhang, N, Muhammad, A, Lu, X and Shao, Y (2022) Probiotic potentials of the silkworm gut symbiont Enterococcus casseliflavus ECB140, a promising L-tryptophan producer living inside the host. Journal of Applied Microbiology 133, 16201635.CrossRefGoogle ScholarPubMed
Linh, NTH, Nagai, S, Nagasaka, N, Okane, S and Taoka, Y (2018) Effect of Lactococcus lactis K-C2 on the growth performance, amino acid content and gut microflora of amberjack Seriola dumerili. Fisheries Science 84, 10511062.CrossRefGoogle Scholar
Liu, L, Ni, X, Zeng, D, Wang, H, Jing, B, Yin, Z and Pan, K (2017 a) Effect of a dietary probiotic, Lactobacillus johnsonii BS15, on growth performance, quality traits, antioxidant ability, and nutritional and flavour substances of chicken meat. Animal Production Science 57, 920.CrossRefGoogle Scholar
Liu, C, Zhu, Q, Chang, J, Yin, Q, Song, A, Li, Z, Wang, E and Lu, F (2017 b) Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets. Archives of Animal Nutrition 71, 120133.CrossRefGoogle ScholarPubMed
Ma, Y, Wang, W, Zhang, H, Wang, J, Zhang, W, Gao, J, Wu, S and Qi, G (2018) Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports 8, 15358.CrossRefGoogle ScholarPubMed
Martín, R and Langella, P (2019) Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology 10, e1047.CrossRefGoogle ScholarPubMed
Massip, C, Branchu, P, Bossuet-Greif, N, Chagneau, CV, Gaillard, D, Martin, P, Boury, M, Sécher, T, Dubois, D, Nougayrède, J-P and Oswald, E (2019) Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathogens 15, e1008029.CrossRefGoogle ScholarPubMed
Mazanko, MS, Gorlov, IF, Prazdnova, EV, Makarenko, MS, Usatov, AV, Bren, AB, Chistyakov, VA, Tutelyan, AV, Komarova, ZB, Mosolova, NI, Pilipenko, DN, Krotova, OE, Struk, AN, Lin, A and Chikindas, ML (2018) Bacillus probiotic supplementations improve laying performance, egg quality, hatching of laying hens, and sperm quality of roosters. Probiotics and Antimicrobial Proteins 10, 367373.CrossRefGoogle ScholarPubMed
Mehta, D (2019) Highlight negative results to improve science. Nature. https://doi.org/10.1038/d41586-019-02960-3.CrossRefGoogle ScholarPubMed
Mikulski, D, Jankowski, J, Mikulska, M and Demey, V (2020) Effects of dietary probiotic (Pediococcus acidilactici) supplementation on productive performance, egg quality, and body composition in laying hens fed diets varying in energy density. Poultry Science 99, 22752285.CrossRefGoogle ScholarPubMed
Nair, DVT, Vazhakkattu Thomas, J, Dewi, G, Noll, S, Brannon, J and Kollanoor Johny, A (2019) Reduction of multidrug-resistant Salmonella enterica serovar Heidelberg using a dairy-originated probiotic bacterium, Propionibacterium freudenreichii freudenreichii B3523, in growing turkeys. Journal of Applied Poultry Research 28, 356363.CrossRefGoogle Scholar
Nair, DVT, Vazhakkattu Thomas, J, Dewi, G, Brannon, J, Noll, SL, Johnson, TJ, Cox, RB and Kollanoor Johny, A (2021) Propionibacterium freudenreichii freudenreichii B3523 reduces cecal colonization and internal organ dissemination of multidrug-resistant Salmonella Heidelberg in finishing turkeys. Journal of Applied Poultry Research 30, 100107.CrossRefGoogle Scholar
Nguyen, TL, Park, C-I and Kim, D-H (2017) Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture 471, 113120.CrossRefGoogle Scholar
Nguyen, TL, Chun, W-K, Kim, A, Kim, N, Roh, HJ, Lee, Y, Yi, M, Kim, S, Park, C-I and Kim, D-H (2018) Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Frontiers in Microbiology 9, e2059.CrossRefGoogle ScholarPubMed
Nougayrède, J-P, Chagneau, CV, Motta, J-P, Bossuet-Greif, N, Belloy, M, Taieb, F, Gratadoux, J-J, Thomas, M, Langella, P and Oswald, E (2021) A toxic friend: genotoxic and mutagenic activity of the probiotic strain Escherichia coli Nissle 1917. mSphere 6, e00624-21.CrossRefGoogle ScholarPubMed
Ognik, K, Cholewińska, E, Krauze, M, Abramowicz, K and Matusevicius, P (2019) The effect of a probiotic preparation containing Enterococcus faecium DSM 7134 for chickens on growth performance, immune status, and the histology and microbiological profile of the jejunum. Animal Production Science 59, 101.CrossRefGoogle Scholar
Patel, S and Gupta, RS (2018) Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. Infection, Genetics and Evolution 66, 130151.CrossRefGoogle ScholarPubMed
Pereira, SA, Jerônimo, GT, da Costa Marchiori, N, de Oliveira, HM, Owatari, MS, Jesus, GFA, Garcia, P, do Nascimento Vieira, F, Martins, ML and Mouriño, JLP (2017) Autochthonous probiotic Lactobacillus sp. in the diet of bullfrog tadpoles Lithobates catesbeianus improves weight gain, feed conversion and gut microbiota. Aquaculture Nutrition 23, 910916.CrossRefGoogle Scholar
Pérez-Ramos, A, Mohedano, ML, Pardo, and López, P (2018) β-Glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Frontiers in Microbiology 9, e1684.CrossRefGoogle ScholarPubMed
Phuoc, TL and Jamikorn, U (2016) Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits. Asian-Australasian Journal of Animal Sciences 30, 198205.CrossRefGoogle ScholarPubMed
Piwowarek, K, Lipińska, E, Hać-Szymańczuk, E, Kieliszek, M and Ścibisz, I (2018) Propionibacterium spp. – source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology 102, 515538.CrossRefGoogle ScholarPubMed
Qin, C, Xie, Y, Wang, Y, Li, S, Ran, C, He, S and Zhou, Z (2018) Impact of Lactobacillus casei BL23 on the host transcriptome, growth and disease resistance in larval zebrafish. Frontiers in Physiology 9, e1245.CrossRefGoogle ScholarPubMed
Reis, MP, Fassani, EJ, Júnior, AAPG, Rodrigues, PB, Bertechini, AG, Barrett, N, Persia, ME and Schmidt, CJ (2017) Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. Journal of Applied Poultry Research 26, 573583.CrossRefGoogle Scholar
Ritchie, H, Rosado, P and Roser, M (2020) Meat and dairy production. Our World in Data. From https://ourworldindata.org/meat-productionGoogle Scholar
Robles-Vera, I, Visitación, N, Toral, M, Sánchez, M, Romero, M, Gómez-Guzmán, M, Yang, T, Izquierdo-García, JL, Guerra-Hernández, E, Ruiz-Cabello, J, Raizada, MK, Pérez-Vizcaíno, F, Jiménez, R and Duarte, J (2020) Probiotic Bifidobacterium breve prevents DOCA-salt hypertension. The FASEB Journal 34, 1362613640.CrossRefGoogle ScholarPubMed
Roos, TB, de Moraes, CM, Sturbelle, RT, Dummer, LA, Fischer, G and Leite, FPL (2018) Probiotics Bacillus toyonensis and Saccharomyces boulardii improve the vaccine immune response to bovine herpesvirus type 5 in sheep. Research in Veterinary Science 117, 260265.CrossRefGoogle ScholarPubMed
Růžičková, M, Vítězová, M and Kushkevych, I (2020) The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Medicine 15, 211224.CrossRefGoogle ScholarPubMed
Saleh, AA, Amber, K and Mohammed, AA (2020) Dietary supplementation with avilamycin and Lactobacillus acidophilus effects growth performance and the expression of growth-related genes in broilers. Animal Production Science 60, 1704.CrossRefGoogle Scholar
Sato, Y, Kuroki, Y, Oka, K, Takahashi, M, Rao, S, Sukegawa, S and Fujimura, T (2019) Effects of dietary supplementation with Enterococcus faecium and Clostridium butyricum, either alone or in combination, on growth and fecal microbiota composition of post-weaning pigs at a commercial farm. Frontiers in Veterinary Science 6, e26.CrossRefGoogle ScholarPubMed
Seo, BJ, Rather, IA, Kumar, VJR, Choi, UH, Moon, MR, Lim, JH and Park, YH (2012) Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. Journal of Applied Microbiology 113, 163171.CrossRefGoogle ScholarPubMed
Sharma, A and Chandra, A (2018) Identification of new Leuconostoc species responsible for post-harvest sucrose losses in sugarcane. Sugar Tech: An International Journal of Sugar Crops & Related Industries 20, 492496.CrossRefGoogle Scholar
Shen, XM, Cui, HX and Xu, XR (2020) Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australasian Journal of Animal Sciences 33, 13521359.CrossRefGoogle ScholarPubMed
Soltani, M, Badzohreh, G, Mirzargar, S, Farhangi, M, Shekarabi, PH and Lymbery, A (2019) Growth behavior and fatty acid production of probiotics, Pediococcus acidilactici and Lactococcus lactis, at different concentrations of fructooligosaccharide: studies validating clinical efficacy of selected synbiotics on growth performance of caspian roach (Rutilus frisii kutum) fry. Probiotics and Antimicrobial Proteins 11, 765773.CrossRefGoogle ScholarPubMed
Sun, Y, He, M, Cao, Z, Xie, Z, Liu, C, Wang, S, Guo, W, Zhang, X and Zhou, Y (2018) Effects of dietary administration of Lactococcus lactis HNL12 on growth, innate immune response, and disease resistance of humpback grouper (Cromileptes altivelis). Fish & Shellfish Immunology 82, 296303.CrossRefGoogle ScholarPubMed
Tan, BF, Lim, T and Boontiam, W (2021) Effect of dietary supplementation with essential oils and a Bacillus probiotic on growth performance, diarrhoea and blood metabolites in weaned pigs. Animal Production Science 61, 64.CrossRefGoogle Scholar
Taoka, Y, Hayami, Y and Linh, NTH (2017) Enrichment of probiotic Lactococcus lactis strain K-C2 in Artemia sp. The JSFS 85th Anniversary-Commemorative International Symposium ‘Fisheries Science for Future Generations’ 07011.Google Scholar
Tarnecki, AM, Wafapoor, M, Phillips, RN and Rhody, NR (2019) Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Scientific Reports 9, 4892.CrossRefGoogle ScholarPubMed
Tiwari, S, Prasad, V and Lata, C (2019) Bacillus: plant growth promoting bacteria for sustainable agriculture and environment. In Singh, JS and Singh, DP (eds), New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier, pp. 4355.CrossRefGoogle Scholar
Traisaeng, S, Batsukh, A, Chuang, T-H, Herr, DR, Huang, Y-F, Chimeddorj, B and Huang, C-M (2020) Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific Reports 10, 7928.CrossRefGoogle ScholarPubMed
Tsai, C, Chi, C and Liu, C (2019) The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research 50, 14751481.CrossRefGoogle Scholar
Valipour, AR, Shahraki, NH and Abdollahpour, H (2018) Effects of probiotic (Pediococcus acidilactici) on growth and survival of kutum (Rutilus kutum) fingerlings. Iranian Journal of Fisheries Sciences 17, 3546.Google Scholar
van der Peet-Schwering, CMC, Verheijen, R, Jørgensen, L and Raff, L (2020) Effects of a mixture of Bacillus amyloliquefaciens and Bacillus subtilis on the performance of growing-finishing pigs. Animal Feed Science and Technology 261, 114409.CrossRefGoogle Scholar
Wade, ME, Strickland, MT, Osborne, JP and Edwards, CG (2019) Role of Pediococcus in winemaking. Australian Journal of Grape and Wine Research 25, 724.CrossRefGoogle Scholar
Wang, H, Ni, X, Qing, X, Liu, L, Xin, J, Luo, M, Khalique, A, Dan, Y, Pan, K, Jing, B and Zeng, D (2018 a) Probiotic Lactobacillus johnsonii BS15 improves blood parameters related to immunity in broilers experimentally infected with subclinical necrotic enteritis. Frontiers in Microbiology 9, e49.CrossRefGoogle ScholarPubMed
Wang, J, Zeng, Y, Wang, S, Liu, H, Zhang, D, Zhang, W, Wang, Y and Ji, H (2018 b) Swine-derived probiotic Lactobacillus plantarum inhibits growth and adhesion of enterotoxigenic Escherichia coli and mediates host defense. Frontiers in Microbiology 9, e1364.CrossRefGoogle ScholarPubMed
Wang, S, Yao, B, Gao, H, Zang, J, Tao, S, Zhang, S, Huang, S, He, B and Wang, J (2019) Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Veterinary Research 15, 239.CrossRefGoogle ScholarPubMed
Wang, W, Cai, H, Zhang, A, Chen, Z, Chang, W, Liu, G, Deng, X, Bryden, WL and Zheng, A (2020) Enterococcus faecium modulates the gut microbiota of broilers and enhances phosphorus absorption and utilization. Animals 10, 1232.CrossRefGoogle ScholarPubMed
Wang, J, Wan, C, Shuju, Z, Yang, Z, Celi, P, Ding, X, Bai, S, Zeng, Q, Mao, X, Xu, S, Zhang, K and Li, M (2021) Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science 100, 11091119.CrossRefGoogle ScholarPubMed
Wealleans, AL, Walsh, MC, Romero, LF and Ravindran, V (2017) Comparative effects of two multi-enzyme combinations and a Bacillus probiotic on growth performance, digestibility of energy and nutrients, disappearance of non-starch polysaccharides, and gut microflora in broiler chickens. Poultry Science 96, 42874297.CrossRefGoogle Scholar
Won, S, Hamidoghli, A, Choi, W, Bae, J, Jang, WJ, Lee, S and Bai, SC (2020) Evaluation of potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in whiteleg shrimp, Litopenaeus vannamei. Microorganisms 8, 281.CrossRefGoogle ScholarPubMed
Xia, Y, Lu, M, Chen, G, Cao, J, Gao, F, Wang, M, Liu, Z, Zhang, D, Zhu, H and Yi, M (2018) Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology 76, 368379.CrossRefGoogle ScholarPubMed
Xu, Y, Tian, Y, Cao, Y, Li, J, Guo, H, Su, Y, Tian, Y, Wang, C, Wang, T and Zhang, L (2019) Probiotic properties of Lactobacillus paracasei subsp. paracasei L1 and its growth performance-promotion in chicken by improving the intestinal microflora. Frontiers in Physiology 10, e937.CrossRefGoogle ScholarPubMed
Yahfoufi, N, Mallet, J, Graham, E and Matar, C (2018) Role of probiotics and prebiotics in immunomodulation. Current Opinion in Food Science 20, 8291.CrossRefGoogle Scholar
Yang, Q, , Y, Zhang, M, Gong, Y, Li, Z, Tran, NT, He, Y, Zhu, C, Lu, Y, Zhang, Y and Li, S (2019) Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). Fish & Shellfish Immunology 93, 135143.CrossRefGoogle ScholarPubMed
Yerlikaya, O (2019) Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. Journal of Dairy Science 102, 124134.CrossRefGoogle ScholarPubMed
Yi, Y-J, Lim, J-M, Gu, S, Lee, W-K, Oh, E, Lee, S-M and Oh, B-T (2017) Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity. Journal of Microbiology 55, 296303.CrossRefGoogle ScholarPubMed
Yu, W, Hao, X, Zhiyue, W, Haiming, Y and Lei, X (2020) Evaluation of the effect of Bacillus subtilis and Pediococcus acidilactici mix on serum biochemistry, growth promotation of body and visceral organs in Lohmann brown chicks. Brazilian Journal of Poultry Science 22, eRBCA-2020-1274.CrossRefGoogle Scholar
Yunes, RA, Poluektova, EU, Vasileva, EV, Odorskaya, MV, Marsova, MV, Kovalev, GI and Danilenko, VN (2020) A multi-strain potential probiotic formulation of GABA-producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with antidepressant effects. Probiotics and Antimicrobial Proteins 12, 973979.CrossRefGoogle ScholarPubMed
Zhao, Y, Zeng, D, Wang, H, Qing, X, Sun, N, Xin, J, Luo, M, Khalique, A, Pan, K, Shu, G, Jing, B and Ni, X (2020) Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics and Antimicrobial Proteins 12, 883895.CrossRefGoogle ScholarPubMed
Zheng, J, Wittouck, S, Salvetti, E, Franz, CMAP, Harris, HMB, Mattarelli, P, O'Toole, PW, Pot, B, Vandamme, P, Walter, J, Watanabe, K, Wuyts, S, Felis, GE, Gänzle, MG and Lebeer, S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70, 27822858.CrossRefGoogle ScholarPubMed
Zommiti, M, Chikindas, ML and Ferchichi, M (2020) Probiotics – live biotherapeutics: a story of success, limitations, and future prospects – not only for humans. Probiotics and Antimicrobial Proteins 12, 12661289.CrossRefGoogle Scholar
Zoumpopoulou, G, Tzouvanou, A, Mavrogonatou, E, Alexandraki, V, Georgalaki, M, Anastasiou, R, Papadelli, M, Manolopoulou, E, Kazou, M, Kletsas, D, Papadimitriou, K and Tsakalidou, E (2018) Probiotic features of lactic acid bacteria isolated from a diverse pool of traditional Greek dairy products regarding specific strain–host interactions. Probiotics and Antimicrobial Proteins 10, 313322.CrossRefGoogle ScholarPubMed