Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:45:33.456Z Has data issue: false hasContentIssue false

A ten-year review of commercial vaccine performance for control of tick infestations on cattle

Published online by Cambridge University Press:  13 August 2007

José de la Fuente*
Affiliation:
Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078-2007, USA Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
Consuelo Almazán
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Cd. Victoria, Tamaulipas, Mexico
Mario Canales
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
José Manuel Pérez de la Lastra
Affiliation:
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
Katherine M. Kocan
Affiliation:
Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078-2007, USA
Peter Willadsen
Affiliation:
CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
*
*Corresponding author. E-mail: jose_delafuente@yahoo.com, djose@cvm.okstate.edu

Abstract

Ticks are important ectoparasites of domestic and wild animals, and tick infestations economically impact cattle production worldwide. Control of cattle tick infestations has been primarily by application of acaricides which has resulted in selection of resistant ticks and environmental pollution. Herein we discuss data from tick vaccine application in Australia, Cuba, Mexico and other Latin American countries. Commercial tick vaccines for cattle based on the Boophilus microplus Bm86 gut antigen have proven to be a feasible tick control method that offers a cost-effective, environmentally friendly alternative to the use of acaricides. Commercial tick vaccines reduced tick infestations on cattle and the intensity of acaricide usage, as well as increasing animal production and reducing transmission of some tick-borne pathogens. Although commercialization of tick vaccines has been difficult owing to previous constraints of antigen discovery, the expense of testing vaccines in cattle, and company restructuring, the success of these vaccines over the past decade has clearly demonstrated their potential as an improved method of tick control for cattle. Development of improved vaccines in the future will be greatly enhanced by new and efficient molecular technologies for antigen discovery and the urgent need for a tick control method to reduce or replace the use of acaricides, especially in regions where extensive tick resistance has occurred.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, JR and Humphreys, SJ (1979). Immunisation of guinea pigs and cattle against ticks. Nature 280: 491493.CrossRefGoogle ScholarPubMed
Barker, SC and Murrell, A (2004). Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129: S15S36.CrossRefGoogle ScholarPubMed
Canales, M, Enríquez, A, Ramos, E, Cabrera, D, Dandie, H, Soto, A, Falcón, V, Rodríguez, M and de la Fuente, J (1997). Large-scale production in Pichia pastoris of the recombinant vaccine Gavac™ against cattle tick. Vaccine 15: 414422.CrossRefGoogle ScholarPubMed
Cobon, G, Hungerford, J, Woodrow, M, Smith, D and Willadsen, P (1995). Vaccination against Boophilus microplus: the Australian field experience. In: de la Fuente, J (ed.) Recombinant Vaccines for the Control of Cattle Tick. Havana, Cuba: Elfos Scientiae, pp. 163176.Google Scholar
de la Fuente, J and Kocan, KM (2003). Advances in the identification and characterization of protective antigens for development of recombinant vaccines against tick infestations. Expert Review of Vaccines 2: 583593.CrossRefGoogle ScholarPubMed
de la Fuente, J and Kocan, KM (2006). Strategies for development of vaccines for control of ixodid tick species. Parasite Immunology 28: 275283.CrossRefGoogle ScholarPubMed
de la Fuente, J, Rodríguez, M, Fragoso, H, Ortíz, M, Massard, CL, García, O, García-García, JC and Lleonart, R (1995). Efficacy of vaccination with Gavac™ in the control of Boophilus microplus infestations. In: de la Fuente, J (ed.) Recombinant Vaccines for the Control of Cattle Tick. Havana, Cuba: Elfos Scientiae, pp. 177186.Google Scholar
de la Fuente, J, Rodriguez, M, Redondo, M, Montero, C, García-García, JC, Méndez, L, Serrano, E, Valdés, M, Enriquez, A, Canales, M, Ramos, E, Boué, O, Machado, H, Lleonart, R, de Armas, CA, Rey, S, Rodríguez, JL, Artiles, M and García, L (1998). Field studies and cost-effectiveness analysis of vaccination with Gavac™ against the cattle tick Boophilus microplus. Vaccine 16: 366373.CrossRefGoogle ScholarPubMed
de la Fuente, J, Rodriguez, M, Montero, C, Redondo, M, Garcia-Garcia, JC, Mendez, L, Serrano, E, Valdes, M, Enriquez, A, Canales, M, Ramos, E, Boue, O, Machado, H and Lleonart, R (1999). Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genetic Analysis 15: 143148.CrossRefGoogle ScholarPubMed
de la Fuente, J, Rodriguez, M and Garcia-Garcia, JC (2000). Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Annals of the New York Academy of Sciences 916: 617621.CrossRefGoogle ScholarPubMed
de la Fuente, J, Almazán, C, Blouin, EF, Naranjo, V and Kocan, KM (2006a). Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitology Research 100: 8591.CrossRefGoogle Scholar
de la Fuente, J, Canales, M and Kocan, KM (2006b). The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunology 28: 687688.CrossRefGoogle ScholarPubMed
de Vos, S, Zeinstra, L, Taoufik, O, Willadsen, P and Jongejan, F (2001). Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Experimental and Applied Acarology 25: 245261.CrossRefGoogle ScholarPubMed
Estrada-Peña, A and Jongejan, F (1999). Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Experimental and Applied Acarology 23: 685715.CrossRefGoogle ScholarPubMed
Foil, LD, Coleman, P, Eisler, M, Fragoso-Sanchez, H, Garcia-Vazquez, Z, Guerrero, FD, Jonsson, NN, Langstaff, IG, Li, AY, Machila, N, Miller, RJ, Morton, J, Pruett, JH and Torr, S (2004). Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Veterinary Parasitology 125: 163181.CrossRefGoogle ScholarPubMed
Fragoso, H, Hoshmand Rad, P, Ortiz, M, Rodríguez, M, Redondo, M, Herrera, L and de la Fuente, J (1998). Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. Vaccine 16: 19901992.CrossRefGoogle Scholar
Graf, JF, Gogolewski, R, Leach-Bing, N, Sabatini, GA, Molento, MB, Bordin, EL and Arantes, GJ (2004). Tick control: an industry point of view. Parasitology 129: S427S442.CrossRefGoogle ScholarPubMed
Jonsson, NN, Matschoss, AL, Pepper, P, Green, PE, Albrecht, MS, Hungerford, J and Ansell, J (2000a). Evaluation of tickGARD(PLUS), a novel vaccine against Boophilus microplus, in lactating Holstein–Friesian cows. Veterinary Parasitology 88: 275285.CrossRefGoogle ScholarPubMed
Jonsson, NN, Mayer, DG and Green, PE (2000b). Possible risk factors on Queensland dairy farms for acaricide resistance in cattle tick (B. microplus). Veterinary Parasitology 88: 7992.CrossRefGoogle Scholar
Lodos, J, Ochogavía, ME, Rodríguez, M and de la Fuente, J (1999). A simulation study of the effects of acaricides and vaccination on Boophilus cattle-tick populations. Preventive Veterinary Medicine 38: 4763.CrossRefGoogle ScholarPubMed
Lodos, J, Boué, O and de la Fuente, J (2000). A model to simulate the effect of vaccination against Boophilus ticks on cattle. Veterinary Parasitology 87: 315326.CrossRefGoogle Scholar
Massard, CL, Fonseca Ramos, N, Rodríguez, M and de la Fuente, J (1995). Effect of vaccination with Gavac™ on the reduction in the number and frequency of acaricide treatments in cattle under production conditions in Brazil. In: de la Fuente, J (ed.) Recombinant Vaccines for the Control of Cattle Tick. La Habana, Cuba: Elfos Scientiae, pp. 200204.Google Scholar
Nuttall, PA, Trimnell, AR, Kazimirova, M and Labuda, M (2006). Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunology 28: 155163.CrossRefGoogle ScholarPubMed
Parola, P and Raoult, D (2001). Tick-borne bacterial diseases emerging in Europe. Clinical Microbiology and Infection 7: 8083.CrossRefGoogle ScholarPubMed
Peter, RJ, Van den Bossche, P, Penzhorn, BL and Sharp, B (2005). Tick, fly, and mosquito control – Lessons from the past, solutions for the future. Veterinary Parasitology 132: 205215.CrossRefGoogle ScholarPubMed
Queensland Government (2006). The cattle tick. [Available online at http://www2.dpi.qld.gov.au/health/3605.html, last reviewed 3 January 2006].Google Scholar
Rand, KN, Moore, T, Sriskantha, A, Spring, K, Tellam, R, Willadsen, P and Cobon, G (1989). Cloning and expression of a protective antigen from the cattle tick Boophilus microplus. Proceedings of the National Academy of Sciences, USA 86: 96579661.CrossRefGoogle ScholarPubMed
Redondo, M, Fragoso, H, Ortíz, M, Montero, C, Lona, J, Medellín, JA, Fría, R, Hernández, V, Franco, R, Machado, H, Rodríguez, M and de la Fuente, J (1999). Control of chemically resistant Boophilus microplus populations on grazing cattle vaccinated with Gavac™ in Mexico. Experimental and Applied Acarology 23: 841849.CrossRefGoogle ScholarPubMed
Rodríguez, M, Rubiera, R, Penichet, M, Montesino, R, Cremata, J, Falcón, V, Sánchez, G, Bringas, R, Cordovéz, C, Valdés, M, Leonart, R, Herrera, L and de la Fuente, J (1994). High level expression of the Boophilus microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. Journal of Biotechnology 33: 135146.CrossRefGoogle ScholarPubMed
Rodríguez, M, Penichet, M, Mouris, AE, Labarta, V, Lorenzo Luaces, L, Rubiera, R, Cordoves, C, Sanchez, P, Ramos, E, Soto, A, Canales, M, Palenzuela, D, Triguero, A, Lleonart, R, Herrera, L and de la Fuente, J (1995a). Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Veterinary Parasitology 57: 339349.CrossRefGoogle ScholarPubMed
Rodríguez, M, Massard, CL, Henrique da Fonseca, A, Fonseca, RN, Machado, H, Labarta, V and de la Fuente, J (1995b). Effect of vaccination with a recombinant Bm86 antigen preparation on natural infestations of Boophilus microplus in grazing dairy and beef pure and crossbred cattle in Brazil. Vaccine 13: 18041808.CrossRefGoogle ScholarPubMed
Rodríguez Valle, M, Méndez, L, Valdez, M, Redondo, M, Espinosa, CM, Vargas, M, Cruz, RL, Barrios, HP, Seoane, G, Ramírez, ES, Boué, O, Vigil, JL, Machado, H, Nordelo, CB and Piñeiro, MJ (2004). Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Experimental and Applied Acarology 34: 375382.CrossRefGoogle Scholar
Rodriguez-Vivas, RI, Alonso-Diaz, MA, Rodriguez-Arevalo, F, Fragoso-Sanchez, H, Santamaria, VM and Rosario-Cruz, R (2006a). Prevalence and potential risk factors for organophosphate and pyrethroid resistance in Boophilus microplus ticks on cattle ranches from the State of Yucatan, Mexico. Veterinary Parasitology 136: 335342.CrossRefGoogle ScholarPubMed
Rodriguez-Vivas, RI, Rodriguez-Arevalo, F, Alonso-Diaz, MA, Fragoso-Sanchez, H, Santamaria, VM and Rosario-Cruz, R (2006b). Prevalence and potential risk factors for amitraz resistance in Boophilus microplus ticks in cattle farms in the State of Yucatan, Mexico. Preventive Veterinary Medicine 75: 280286.CrossRefGoogle ScholarPubMed
Sonenshine, DE, Kocan, KM and de la Fuente, J (2006). Tick control: further thoughts on a research agenda. Trends in Parasitology 22: 550551.CrossRefGoogle ScholarPubMed
Vanegas, LF, Parra, SA, Vanegas, CG and de la Fuente, J (1995). Commercialization of the recombinant vaccine Gavac™ against Boophilus microplus in Colombia. In: de la Fuente, J (ed.) Recombinant Vaccines for the Control of Cattle Tick. La Habana, Cuba: Elfos Scientiae, pp. 195199.Google Scholar
Willadsen, P (2004). Anti-tick vaccines. Parasitology 129: S367S387.CrossRefGoogle ScholarPubMed
Willadsen, P (2006). Tick control: thoughts on a research agenda. Veterinary Parasitology 138: 161168.CrossRefGoogle ScholarPubMed
Willadsen, P, Riding, GA, McKenna, RV, Kemp, DH, Tellam, RL, Nielsen, JN, Lahstein, J, Cobon, GS and Gough, JM (1989). Immunological control of a parasitic arthropod: identification of a protective antigen from Boophilus microplus. Journal of Immunology 143: 13461351.CrossRefGoogle ScholarPubMed
Willadsen, P, Bird, P, Cobon, GS and Hungerford, J (1995). Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology 110: S43S50.CrossRefGoogle ScholarPubMed
Willadsen, P, Smith, D, Cobon, G and McKenna, RV (1996). Comparative vaccination of cattle against B. microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91. Parasite Immunology 18: 241246.CrossRefGoogle ScholarPubMed