Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:06:08.203Z Has data issue: false hasContentIssue false

Veterinary vaccines: alternatives to antibiotics?*

Published online by Cambridge University Press:  22 December 2008

Andrew Potter*
Affiliation:
Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
Volker Gerdts
Affiliation:
Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
Sylvia van Drunen Littel-van den Hurk
Affiliation:
Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
*
Corresponding author. E-mail: andrew.potter@usask.ca

Abstract

The prevention of infectious diseases of animals by vaccination has been routinely practiced for decades and has proved to be one of the most cost-effective methods of disease control. However, since the pioneering work of Pasteur in the 1880s, the composition of veterinary vaccines has changed very little from a conceptual perspective and this has, in turn, limited their application in areas such as the control of chronic infectious diseases. New technologies in the areas of vaccine formulation and delivery as well as our increased knowledge of disease pathogenesis and the host responses associated with protection from disease offer promising alternatives for vaccine formulation as well as targets for the prevention of bacterial disease. These new vaccines have the potential to lessen our reliance on antibiotics for disease control, but will only reach their full potential when used in combination with other intervention strategies.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Published with the permission of the Director of VIDO as manuscript number 513.

References

Al-Haddawi, M, Mitchell, GB, Clark, ME, Wood, RD and Caswell, JL (2007). Impairment of innate immune responses of airway epithelium by infection with bovine viral diarrhea virus. Veterinary Immunology and Immunopathology 116: 153162.CrossRefGoogle ScholarPubMed
Allaoui-Attarki, K, Pecquet, S, Fattal, E, Trolle, S, Chachaty, E, Couvreur, P and Andremont, A (1997). Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(dl-lactide-co-glycolide) microspheres. Infection and Immunity 65: 853857.CrossRefGoogle ScholarPubMed
Aloni-Grinstein, R, Gat, O, Altboum, Z, Velan, B, Cohen, S and Shafferman, A (2005). Oral spore vaccine based on live attenuated toxigenic Bacillus anthracis expressing recombinant mutant protective antigen. Infection and Immunity 73: 40434053.CrossRefGoogle Scholar
Autenrieth, IB and Schmidt, MA (2000). Bacterial interplay at intestinal mucosal surfaces: implications for vaccine development. Trends in Microbiology 8: 457464.CrossRefGoogle ScholarPubMed
Babiuk, LA, LItalien, J, van Drunen, Littel-van den Hurk S, Zamb, T, Lawman, JP, Hughes, G and Gifford, GA (1987). Protection of cattle from bovine herpesvirus type I (BHV-1) infection by immunization with individual viral glycoproteins. Virology 159: 5766.CrossRefGoogle ScholarPubMed
Baca-Estrada, ME, Foldvari, M and Snider, M (1999). Induction of mucosal immune responses by administration of liposome-antigen formulations and interleukin-12. Journal of Interferon Cytokine Research 19: 455462.CrossRefGoogle ScholarPubMed
Baca-Estrada, ME, Foldvari, MM, Snider, MM, Harding, KK, Kournikakis, BB, Babiuk, LA and Griebel, PP (2000). Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses. Vaccine 18: 22032211.CrossRefGoogle ScholarPubMed
Biragyn, A, Surenhu, M, Yang, D, Ruffini, PA, Haines, BA, Klyushnenkova, E, Oppenheim, JJ and Kwak, LW (2001). Mediators of innate immunity that target immature but not mature dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. Journal of Immunology 167: 66446653.CrossRefGoogle Scholar
Biragyn, A, Ruffini, PA, Leifer, CA, Klyushnenkova, E, Shakhov, A, Chertov, O, Shirakawa, AK, Farber, JM, Segal, DM, Oppenheim, JJ and Kwak, LW (2002). Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298: 10251029.CrossRefGoogle ScholarPubMed
Bowdish, DM, Davidson, DJ and Hancock, RE (2006). Immunomodulatory properties of defensins and cathelicidins. Current Topics in Microbiology and Immunology 306: 2766.Google ScholarPubMed
Bowersock, TL, HogenEsch, H, Torregrosa, S, Borie, D, Wang, B, Park, H and Park, K (1998). Induction of pulmonary immunity in cattle by oral administration of ovalbumin in alginate microspheres. Immunology Letters 60: 3743.CrossRefGoogle ScholarPubMed
Bowersock, TL, HogenEsch, H, Suckow, M, Guimond, P, Martin, S, Borie, D, Torregrosa, S, Park, H and Park, K (1999). Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine 17: 18041811.CrossRefGoogle ScholarPubMed
Bowland, SL and Shewen, PE (2000). Bovine respiratory disease: commercial vaccines currently available in Canada. Canadian Veterinary Journal 41: 3348.Google ScholarPubMed
Brown, KL and Hancock, RE (2006). Cationic host defense (antimicrobial) peptides. Current Opinions in Immunology 18: 2430.CrossRefGoogle ScholarPubMed
Bullen, JJ, Rogers, HJ and Griffiths, E (1972). Iron binding proteins and infection. British Journal of Haematology 23: 389392.CrossRefGoogle ScholarPubMed
Bullen, JJ, Rogers, HJ and Griffiths, E (1978). Role of iron in bacterial infection. Current Topics in Microbiology and Immunology 80: 135.Google ScholarPubMed
Carcaboso, AM, Hernandez, RM, Igartua, M, Rosas, JE, Patarroyo, ME and Pedraz, JL (2004). Potent long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 22: 14231432.CrossRefGoogle ScholarPubMed
Charles, I and Dougan, G (1990). Gene expression and the development of live enteric vaccines. Trends in Biotechnology 8: 117121.CrossRefGoogle ScholarPubMed
Chen, SC, Jones, DH, Fynan, EF, Farrar, GH, Clegg, JC, Greenberg, HB and Herrmann, JE (1998). Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. Journal of Virology 72: 57575761.CrossRefGoogle ScholarPubMed
Chu, RS, Targoni, OS, Krieg, AM, Lehmann, PV and Harding, CV (1997). CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. Journal of Experimental Medicine 186: 16231631.CrossRefGoogle Scholar
Conlan, JW, KuoLee, R, Webb, A and Perry, MB (1999). Salmonella landau as a live vaccine against Escherichia coli O157:H7 investigated in a mouse model of intestinal colonization. Canadian Journal of Microbiology 45: 723731.CrossRefGoogle Scholar
Conlan, JW, KuoLee, R, Webb, A, Cox, AD and Perry, MB (2000). Oral immunization of mice with a glycoconjugate vaccine containing the O157 antigen of Escherichia coli O157:H7 admixed with cholera toxin fails to elicit protection against subsequent colonization by the pathogen. Canadian Journal of Microbiology 46: 283290.CrossRefGoogle ScholarPubMed
Cook, JK, Smith, HW and Huggins, MB (1986). Infectious bronchitis immunity: its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli. Journal of General Virology 67: 14271434.CrossRefGoogle ScholarPubMed
Corbeil, LB (2008). Histophilus somni host-parasite relationships. Animal Health Research Reviews 8: 151160.CrossRefGoogle Scholar
Cox, GJ, Zamb, TJ and Babiuk, LA (1993). Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. Journal of Virology 67: 56645667.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Leite, F, Sylte, M, Kuckleburg, C, Schultz, R, Inzana, T, Behling-Kelly, E and Corbeil, L (2004). Complexities of the pathogenesis of Mannheimia haemolytica and Haemophilus somnus infections: challenges and potential opportunities for prevention? Animal Health Research Reviews 5: 277282.CrossRefGoogle ScholarPubMed
Darji, A, zur Lage, S, Garbe, AI, Chakraborty, T and Weiss, S (2000). Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunology and Medical Microbiology 27: 341349.CrossRefGoogle ScholarPubMed
Dean-Nystrom, EA, Gansheroff, LJ, Mills, M, Moon, HW and O'Brien, AD (2002). Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infection and Immunity 70: 24142418.CrossRefGoogle ScholarPubMed
Deneer, HG and Potter, AA (1989a). Effect of iron restriction on the outer membrane proteins of Actinobacillus (Haemophilus) pleuropneumoniae. Infection and Immunity 57: 798804.CrossRefGoogle ScholarPubMed
Deneer, HG and Potter, AA (1989b). Iron-repressible outer-membrane proteins of Pasteurella haemolytica. Journal of General Microbiology 135: 435443.Google ScholarPubMed
Dietrich, G, Spreng, S, Favre, D, Viret, JF and Guzman, CA (2003). Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Current Opinion in Molecular Therapeutics 5: 1019.Google ScholarPubMed
Douglas, KL, Piccirillo, CA and Tabrizian, M (2006). Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. Journal of Controlled Release 115: 354361.CrossRefGoogle ScholarPubMed
Ebensen, T, Paukner, S, Link, C, Kudela, P, de Domenico, C, Lubitz, W and Guzman, CA (2004). Bacterial ghosts are an efficient delivery system for DNA vaccines. Journal of Immunology 172: 68586865.CrossRefGoogle ScholarPubMed
Fattal, E, Pecquet, S, Couvreur, P and Andremont, A (2002). Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens. International Journal of Pharmaceutics 242: 1524.CrossRefGoogle ScholarPubMed
Felder, CB, Vorlaender, N, Gander, B, Merkle, HP and Bertschinger, HU (2000). Microencapsulated enterotoxigenic Escherichia coli and detached fimbriae for peroral vaccination of pigs. Vaccine 19: 706715.CrossRefGoogle ScholarPubMed
Finlay, BB and Hancock, RE (2004). Can innate immunity be enhanced to treat microbial infections? Nature Reviews Microbiology 2: 497504.CrossRefGoogle ScholarPubMed
Fleischmann, RD, Adams, MD, White, O, Clayton, RA, Kirkness, EF, Kerlavage, AR, Bult, CJ, Tomb, JF, Dougherty, BA, Merrick, JM, Sutton, G, FitzHugh, W, Fields, C, Gocayne, J, Scott, J, Shirley, R, Liu, L-I, Glodek, A, Kelley, JM, Weidman, JF, Phillips, CA, Spriggs, T, Hedblom, E, Cotton, MD, Utterback, TR, Hanna, MC, Nguyen, DT, Saudek, DM, Brandon, RC, Fine, LD, Fritchman, JL, Fuhrmann, JL, Geoghagen, NSM, Gnehm, LC, McDonald, LA, Small, KV, Fraser, CM, Smith, HO and Venter, JC (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496512.CrossRefGoogle ScholarPubMed
Foster, GL, Barr, TA, Grant, AJ, McKinley, TJ, Bryant, CE, Macdonald, A, Gray, D, Yamamoto, M, Akira, S, Maskell, DJ and Mastroeni, P (2008). Virulent Salmonella enterica infections can be exacerbated by concomitant infection of the host with a live attenuated S. enterica vaccine via Toll-like receptor 4-dependent interleukin-10 production with the involvement of both TRIF and MyD88. Immunology 124: 469479.CrossRefGoogle ScholarPubMed
Fukutome, K, Watarai, S, Mukamoto, M and Kodama, H (2001). Intestinal mucosal immune response in chickens following intraocular immunization with liposome-associated Salmonella enterica serovar enteritidis antigen. Developmental and Comparative Immunology 25: 475484.CrossRefGoogle ScholarPubMed
Fuller, TE, Shea, RJ, Thacker, BJ and Mulks, MH (1999). Identification of in vivo induced genes in Actinobacillus pleuropneumoniae. Microbial Pathogenesis 27: 311327.CrossRefGoogle ScholarPubMed
Fuller, TE, Kennedy, MJ and Lowery, DE (2000). Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microbial Pathogenesis 29: 2538.CrossRefGoogle Scholar
Garmory, HS, Leary, SE, Griffin, KF, Williamson, ED, Brown, KA and Titball, RW (2003). The use of live attenuated bacteria as a delivery system for heterologous antigens. Journal of Drug Target 11: 471479.CrossRefGoogle ScholarPubMed
Gast, RK, Stone, HD and Holt, PS (1993). Evaluation of the efficacy of oil-emulsion bacterins for reducing fecal shedding of Salmonella enteritidis by laying hens. Avian Diseases 37: 10851091.CrossRefGoogle ScholarPubMed
Gentschev, I, Mollenkopf, H, Sokolovic, Z, Hess, J, Kaufmann, SH and Goebel, W (1996). Development of antigen-delivery systems based on the Escherichia coli hemolysin secretion pathway. Gene 179: 133140.CrossRefGoogle ScholarPubMed
Gentschev, I, Dietrich, G and Goebel, W (2002). The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends in Microbiology 10: 3945.CrossRefGoogle Scholar
Gerdts, V, Babiuk, LA, van Drunen, Littel-van den H and Griebel, PJ (2000). Fetal immunization by a DNA vaccine delivered into the oral cavity. Nature Medicine 6: 929932.CrossRefGoogle ScholarPubMed
Gerlach, GF, Klashinsky, S, Anderson, C, Potter, AA and Willson, PJ (1992). Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infection and Immunity 60: 32533261.CrossRefGoogle ScholarPubMed
Gershwin, LJ, Berghaus, LJ, Arld, K, Anderson, ML and Corbeil, LB (2005). Immune mechanisms of pathogenetic synergy in concurrent bovine pulmonary infection with Haemophilus somnus and bovine respiratory syncytial virus. Veterinary Immunology and Immunopathology 107: 119130.CrossRefGoogle ScholarPubMed
Gilmour, NJ, Donachie, W, Sutherland, AD, Gilmour, JS, Jones, GE and Quirie, M (1991). Vaccine containing iron-regulated proteins of Pasteurella haemolytica A2 enhances protection against experimental pasteurellosis in lambs. Vaccine 9: 137140.CrossRefGoogle ScholarPubMed
Gregoriadis, G (1990). Immunological adjuvants: a role for liposomes. Immunology Today 11: 8997.CrossRefGoogle ScholarPubMed
Greimel, A, Werle, M and Bernkop-Schnurch, A (2007). Oral peptide delivery: in-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles. Journal of Pharmacy and Pharmacology 59: 11911198.CrossRefGoogle ScholarPubMed
Griffiths, E, Rogers, HJ and Bullen, JJ (1980). Iron plasmids and infection. Nature 284: 508509.CrossRefGoogle ScholarPubMed
Griffiths, E, Stevenson, P, Hale, TL and Formal, SB (1985). Synthesis of aerobactin and a 76000-dalton iron-regulated outer membrane protein by Escherichia coli K-12-Shigella flexneri hybrids and by enteroinvasive strains of Escherichia coli. Infection and Immunity 49: 6771.CrossRefGoogle Scholar
Harokopakis, E, Hajishengallis, G and Michalek, SM (1998). Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infection and Immunity 66: 42994304.CrossRefGoogle ScholarPubMed
Herrmann, JE, Chen, SC, Jones, DH, Tinsley-Bown, A, Fynan, EF, Greenberg, HB and Farrar, GH (1999). Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 259: 148153.CrossRefGoogle ScholarPubMed
Hess, RG, Bachmann, PA, Baljer, G, Mayr, A, Pospischil, A and Schmid, G (1984). Synergism in experimental mixed infections of newborn colostrum-deprived calves with bovine rotavirus and enterotoxigenic Escherichia coli (ETEC). Zentralblatt für Veterinärmedizin B 31: 585596.CrossRefGoogle ScholarPubMed
Huang, HJ and Matsumoto, M (2000). Nonspecific innate immunity against Escherichia coli infection in chickens induced by vaccine strains of Newcastle disease virus. Avian Diseases 44: 790796.CrossRefGoogle ScholarPubMed
Illum, L, Jabbal-Gill, I, Hinchcliffe, M, Fisher, AN and Davis, SS (2001). Chitosan as a novel nasal delivery system for vaccines. Advanced Drug Delivery Reviews 51: 8196.CrossRefGoogle ScholarPubMed
Ioanu, XP, Gomis, SM, Karvonen, B, Hecker, R, Babiuk, LA and van Drunen, Littel-van den Hurk S (2002a). CpG-containing oligodeoxynucleotides in combination with conventional adjuvants enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine 21: 127137.CrossRefGoogle Scholar
Ioanu, XP, Griebel, P, Hecker, R, Babiuk, LA and van Drunen, Littel-van den Hurk S (2002b). The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides. Journal of Virology 76: 90029010.CrossRefGoogle Scholar
Jericho, KW, Loewen, KG, Smithson, SE and Kozub, GC (1991). Protective effect of inactivated bovine herpesvirus-1 in calves experimentally infected with bovine herpesvirus-1 and Pasteurella haemolytica. Research in Veterinary Science 51: 209214.CrossRefGoogle ScholarPubMed
Jones, DH, McBride, BW, Thornton, C, O'Hagan, DT, Robinson, A and Farrar, GH (1996). Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infection and Immunity 64: 489494.CrossRefGoogle ScholarPubMed
Joseph, A, Louria-Hayon, I, Plis-Finarov, A, Zeira, E, Zakay-Rones, Z, Raz, E, Hayashi, T, Takabayashi, K, Barenholz, Y and Kedar, E (2002). Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. Vaccine 20: 33423354.CrossRefGoogle ScholarPubMed
Kao, RR, Graver, MB, Charleston, B, Hope, JC, Martin, M and Howard, CJ (2007). Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus. Journal of the Royal Society Interface 4: 545551.CrossRefGoogle ScholarPubMed
Kidane, A, Guimond, P, Ju, TR, Sanchez, M, Gibson, J and Bowersock, TL (2001). The efficacy of oral vaccination of mice with alginate encapsulated outer membrane proteins of Pasteurella haemolytica and One-Shot. Vaccine 19: 26372646.CrossRefGoogle ScholarPubMed
Kit, M, Kit, S, Little, SP, Di Marchi, RD and Gale, C (1991). Bovine herpesvirus-1 (infectious bovine rhitracheitis virus)-based viral vector which expresses foot-and-mouth disease epitopes. Vaccine 9: 564572.CrossRefGoogle ScholarPubMed
Krieg, AM (2006). Therapeutic potential of Toll-like receptor 9 activation. Nature Review Drug Discovery 5: 471484.CrossRefGoogle ScholarPubMed
Kweon, CH, Kang, SW, Choi, EJ and Kang, YB (1999). Bovine herpes virus expressing envelope protein (E2) of bovine viral diarrhea virus as a vaccine candidate. The Journal of Veterinary Medical Science 61: 395401.CrossRefGoogle ScholarPubMed
Leite, F, Kuckleburg, C, Atapattu, D, Schultz, R and Czuprynski, CJ (2004). BHV-1 infection and inflammatory cytokines amplify the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood mononuclear cells in vitro. Veterinary Immunology and Immunopathology 99: 193202.CrossRefGoogle ScholarPubMed
Lillard, JW Jr, Boyaka, PN, Chertov, O, Oppenheim, JJ and McGhee, JR (1999). Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proceedings of the National Academy of Sciences, USA 96: 651656.CrossRefGoogle ScholarPubMed
Locht, C (2000). Live bacterial vectors for intranasal delivery of protective antigens. Pharmaceutical Science and Technology Today 3: 121128.CrossRefGoogle ScholarPubMed
Loessner, H and Weiss, S (2004). Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opinion on Biological Therapy 4: 157168.CrossRefGoogle ScholarPubMed
Lopez, AM, Hecker, R, Mutwiri, G, van Drunen, Littel-van den Hurk S, Babiuk, LA and Townsend, HG (2006). Formulation with CpG ODN enhances antibody responses to an equine influenza virus vaccine. Veterinary Immunology and Immunopathology 114: 103110.CrossRefGoogle Scholar
Matthijs, MG, van Eck, JH, de Wit, JJ, Bouma, A and Stegeman, JA (2005). Effect of IBV-H120 vaccination in broilers on colibacillosis susceptibility after infection with a virulent Massachusetts-type IBV strain. Avian Diseases 49: 540545.CrossRefGoogle ScholarPubMed
Mavromatis, I, Kritas, SK, Alexopoulos, C, Tsinas, A and Kyriakis, SC (1999). Field evaluation of a live vaccine against porcine reproductive and respiratory syndrome in fattening pigs. Zentralblatt für Veterinärmedizin B 46: 603612.Google ScholarPubMed
McNeal, MM, Rae, MN and Ward, RL (1999). Effects of different adjuvants on rotavirus antibody responses and protection in mice following intramuscular immunization with inactivated rotavirus. Vaccine 17: 15731580.CrossRefGoogle ScholarPubMed
Mookherjee, N, Brown, KL, Bowdish, DM, Doria, S, Falsafi, R, Hokamp, K, Roche, FM, Mu, R, Doho, GH, Pistolic, J, Powers, JP, Bryan, J, Brinkman, FS and Hancock, RE (2006). Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. Journal of Immunology 176: 24552464.CrossRefGoogle ScholarPubMed
Morein, B, Hu, KF and Abusugra, I (2004). Current status and potential application of ISCOMs in veterinary medicine. Advanced Drug Delivery Reviews 56: 13671382.CrossRefGoogle ScholarPubMed
Morein, B, Sundquist, B, Hoglund, S, Dalsgaard, K and Osterhaus, A (1984). Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308: 457–60.CrossRefGoogle ScholarPubMed
Mutwiri, G, Bowersock, TL and Babiuk, LA (2005). Microparticles for oral delivery of vaccines. Expert Opinion on Drug Delivery 2: 791806.CrossRefGoogle ScholarPubMed
Mutwiri, G, Benjamin, P, Soita, H, Townsend, H, Yost, R, Roberts, B, Andriav, AK and Babiuk, LA (2007a). Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 25: 12041213.CrossRefGoogle ScholarPubMed
Mutwiri, G, Gerdts, V, Lopez, M and Babiuk, LA (2007b). Innate immunity and new adjuvants. Review Scientifique et Technique 26: 4756.Google ScholarPubMed
Nakamura, K, Ueda, H, Tanimura, T and Guchi, K (1994). Effect of mixed live vaccine (Newcastle disease and infectious bronchitis) and Mycoplasma gallisepticum on the chicken respiratory tract and on Escherichia coli infection. Journal of Comparative Pathology 111: 3342.CrossRefGoogle ScholarPubMed
Nicoletti, P and Milward, FW (1983). Protection by oral administration of Brucella abortus strain 19 against an oral challenge exposure with a pathogenic strain of Brucella. American Journal of Veterinary Research 44: 16411643.Google Scholar
O'Hagan, DT (1996). The intestinal uptake of particles and the implications for drug and antigen delivery. Journal of Anatomy 189: 477482.Google ScholarPubMed
O'Hagan, DT (1998). Microparticles and polymers for the mucosal delivery of vaccines. Advanced Drug Delivery Reviews 34: 305320.CrossRefGoogle ScholarPubMed
Ogunnariwo, JA and Schryvers, AB (1990). Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infection and Immunity 58: 20912097.CrossRefGoogle ScholarPubMed
Ogunnariwo, JA, Alcantara, J and Schryvers, AB (1991). Evidence for non-siderophore-mediated acquisition of transferrin-bound iron by Pasteurella multocida. Microbial Pathogenesis 11: 4756.CrossRefGoogle ScholarPubMed
Ogunnariwo, JA, Woo, TK, Lo, RY, Gonzalez, GC and Schryvers, AB (1997). Characterization of the Pasteurella haemolytica transferrin receptor genes and the recombinant receptor proteins. Microbial Pathogenesis 23: 273284.CrossRefGoogle ScholarPubMed
Oppenheim, JJ, Biragyn, A, Kwak, LW and Yang, D (2003). Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Annals of the Rheumatic Diseases 62 (suppl. 2): ii17ii21.CrossRefGoogle ScholarPubMed
Pasteur, L (1880). De l'attenuation du virus du cholera des poules. Comptes Rendus de l'Académie des Sciences, Paris 91: 673680.Google Scholar
Pasteur, L (1881). De l'attenuation des virus et de leur retour a la virulence. Comptes-rendus de l'Académie Bulgare des Sciences 92: 429435.Google Scholar
Payne, LG, Jenkins, SA, Woods, AL, Grund, EM, Geribo, WE, Loebelenz, JR, Andriav, AK and Roberts, BE (1998). Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16: 9298.CrossRefGoogle ScholarPubMed
Pizza, M, Scarlato, V, Masignani, V, Giuliani, MM, Arico, B, Comanducci, M, Jennings, GT, Baldi, L, Bartolini, E, Capecchi, B, Galeotti, CL, Luzzi, E, Manetti, R, Marchetti, E, Mora, M, Nuti, S, Ratti, G, Santini, L, Savi, S, Scarselli, M, Storni, E, Zuo, P, Broeker, M, Hundt, E, Knapp, B, Blair, E, Mason, T, Tettelin, H, Hood, DW, Jeffries, AC, Saunders, NJ, Graff, DM, Venter, JC, Moxon, ER, Grandi, G and Rappuoli, R (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287: 18161820.CrossRefGoogle ScholarPubMed
Potter, AA, Schryvers, AB, Ogunnariwo, JA, Hutchins, WA, Lo, RY and Watts, T (1999). Protective capacity of the Pasteurella haemolytica transferrin-binding proteins TbpA and TbpB in cattle. Microbial Pathogenesis 27: 197206.CrossRefGoogle ScholarPubMed
Potter, AA, Klashinsky, S, Li, Y, Frey, E, Townsend, H, Rogan, D, Erickson, G, Hinkley, S, Klopfenstein, T, Moxley, RA, Smith, DR and Finlay, BB (2004). Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22: 362369.CrossRefGoogle ScholarPubMed
Ramon, G (1924). Sur la toxine et sur l'anatoxine diphteriques. Annales de L'Institut Pasteur 38: 1.Google Scholar
Rebelatto, MC, Guimond, P, Bowersock, TL and HogenEsch, H (2001). Induction of systemic and mucosal immune response in cattle by intranasal administration of pig serum albumin in alginate microparticles. Veterinary Immunology and Immunopathology 83: 93105.CrossRefGoogle ScholarPubMed
Rice, J, Ainley, WM and Shewen, P (2005). Plant-made vaccines: biotechnology and immunology in animal health. Animal Health Research Reviews 6: 199209.CrossRefGoogle ScholarPubMed
Roland, KL, Tinge, SA, Killeen, KP and Kochi, SK (2005). Recent advances in the development of live attenuated bacterial vectors. Current Opinion in Molecular Therapeutics 7: 6272.Google ScholarPubMed
Scarselli, M, Giuliani, MM, Adu-Bobie, J, Pizza, M and Rappuoli, R (2005). The impact of genomics on vaccine design. Trends in Biotechnology 23: 8491.CrossRefGoogle ScholarPubMed
Schuh, JC, Bielefeldt, Ohmann H, Babiuk, LA and Doige, CE (1992). Bovine herpesvirus-1-induced pharyngeal tonsil lesions in neonatal and weanling calves. Journal of Comparative Pathology 106: 243253.CrossRefGoogle ScholarPubMed
Sheppard, M (1999). Viral vectors for veterinary vaccines. Advances in Veterinary Medicine 41: 145161.CrossRefGoogle ScholarPubMed
Singh, M and O'Hagan, DT (2003). Recent advances in veterinary vaccine adjuvants. International Journal of Parasitology 33: 469478.CrossRefGoogle ScholarPubMed
Singh, M, Vajdy, M, Gardner, J, Briones, M and O'Hagan, D (2001). Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine 20: 594602.CrossRefGoogle ScholarPubMed
Sizemore, DR, Branstrom, AA and Sadoff, JC (1995). Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270: 299302.CrossRefGoogle ScholarPubMed
Sizemore, DR, Branstrom, AA and Sadoff, JC (1997). Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization. Vaccine 15: 804807.CrossRefGoogle ScholarPubMed
Slauch, JM and Camilli, A (2000). IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods in Enzymology 326: 7396.CrossRefGoogle ScholarPubMed
Slauch, JM, Mahan, MJ and Mekalas, JJ (1994). In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods in Enzymology 235: 481492.CrossRefGoogle ScholarPubMed
Srikumaran, S, Kelling, CL and Ambagala, A (2007). Immune evasion by pathogens of bovine respiratory disease complex. Animal Health Research Reviews 8: 215229.CrossRefGoogle ScholarPubMed
Stilwell, G, Matos, M, Caroli, N and Lima, MS (2008). Effect of a quadrivalent vaccine against respiratory virus on the incidence of respiratory disease in weaned beef calves. Preventive Veterinary Medicine 85: 151157.CrossRefGoogle ScholarPubMed
Stocker, BA (2000). Aromatic-dependent Salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them. Journal of Biotechnology 83: 4550.CrossRefGoogle ScholarPubMed
Storz, J, Purdy, CW, Lin, X, Burrell, M, Truax, RE, Briggs, RE, Frank, GH and Loan, RW (2000). Isolation of respiratory bovine coronavirus other cytocidal viruses and Pasteurella spp. from cattle involved in two natural outbreaks of shipping fever. Journal of the American Veterinary Medical Association 216: 15991604.CrossRefGoogle ScholarPubMed
Tacket, CO, Reid, RH, Boedeker, EC, Losonsky, G, Nataro, JP, Bhagat, H and Edelman, R (1994). Enteral immunization and challenge of volunteers given enterotoxigenic E. coli CFA/II encapsulated in biodegradable microspheres. Vaccine 12: 12701274.CrossRefGoogle ScholarPubMed
Tana, Watarai S, Isogai, E and Oguma, K (2003). Induction of intestinal IgA and IgG antibodies preventing adhesion of verotoxin-producing Escherichia coli to Caco-2 cells by oral immunization with liposomes. Letters in Applied Microbiology 36: 135139.CrossRefGoogle ScholarPubMed
Thacker, EL, Thacker, BJ, Young, TF and Halbur, PG (2000). Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae. Vaccine 18: 12441252.CrossRefGoogle ScholarPubMed
Thole, JE, van Dalen, PJ, Havenith, CE, Pouwels, PH, Seegers, JF, Tielen, FD, van der Zee, MD, Zegers, ND and Shaw, M (2000). Live bacterial delivery systems for development of mucosal vaccines. Current Opinion in Molecular Therapeutics 2: 9499.Google ScholarPubMed
Vajdy, M and O'Hagan, DT (2001). Microparticles for intranasal immunization. Advanced Drug Delivery Reviews 51: 127141.CrossRefGoogle ScholarPubMed
van der Lubben, IM, Verhoef, JC, van Aelst, AC, Borchard, G and Junginger, HE (2001). Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches. Biomaterials 22: 687694.CrossRefGoogle ScholarPubMed
van Drunen, Littel-van den Hurk S, Gifford, GA and Babiuk, LA (1990). Epitope specificity of the protective immune response induced by individual bovine herpesvirus-1 glycoproteins. Vaccine 8: 358368.CrossRefGoogle Scholar
van Zijl, M, Wensvoort, G, de Kluyver, E, Hulst, M, van der Gulden, H, Gielkens, A, Berns, A and Moormann, R (1991). Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. Journal of Virology 65: 27612765.CrossRefGoogle ScholarPubMed
Vasilakos, JP, Smith, RM, Gibson, SJ, Lindh, JM, Pederson, LK, Reiter, MJ, Smith, MH and Tomai, MA (2000). Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cellular Immunology 204: 6474.CrossRefGoogle ScholarPubMed
Wang, D, Christopher, ME, Nagata, LP, Zabielski, MA, Li, H, Wong, JP and Samuel, J (2004). Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal cellular and humoral immune responses. Journal of Clinical Virology 31 (suppl. 1): S99S106.CrossRefGoogle ScholarPubMed
Wellenberg, GJ, van der Poel, WH and Van Oirschot, JT (2002). Viral infections and bovine mastitis: a review. Veterinary Microbiology 88: 2745.CrossRefGoogle ScholarPubMed
Wilson, HL, Dar, A, Napper, SK, Marianela, Lopez A, Babiuk, LA and Mutwiri, GK (2006). Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides. International Reviews of Immunology 25: 183213.CrossRefGoogle ScholarPubMed
Wu, JY, Wade, WF and Taylor, RK (2001). Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infection and Immunity 69: 76957702.CrossRefGoogle ScholarPubMed
Yang, D, Chertov, O, Bykovskaia, SN, Chen, Q, Buffo, MJ, Shogan, J, Anderson, M, Schroder, JM, Wang, JM, Howard, OM and Oppenheim, JJ (1999). Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525528.CrossRefGoogle Scholar
Yang, D, Chertov, O and Oppenheim, JJ (2001). Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). Journal of Leukocyte Biology 69: 691697.CrossRefGoogle ScholarPubMed
Yang, D, Biragyn, A, Hoover, DM, Lubkowski, J and Oppenheim, JJ (2004). Multiple roles of antimicrobial defensins cathelicidins and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology 22: 181215.CrossRefGoogle ScholarPubMed
Yokoyama, N, Maeda, K and Mikami, T (1997). Recombinant viral vector vaccines for the veterinary use. Journal of Veterinary Medical Science 59: 311322.CrossRefGoogle ScholarPubMed
Zhou, F, Kraehenbuhl, JP and Neutra, MR (1995). Mucosal IgA response to rectally administered antigen formulated in IgA-coated liposomes. Vaccine 13: 637644.CrossRefGoogle ScholarPubMed
Zhou, Z, Xia, H, Hu, X, Huang, Y, Li, Y, Li, L, Ma, C, Chen, X, Hu, F, Xu, J, Lu, F, Wu, Z and Yu, X (2008a). Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26: 18171825.CrossRefGoogle ScholarPubMed
Zhou, Z, Xia, H, Hu, X, Huang, Y, Ma, C, Chen, X, Hu, F, Xu, J, Lu, F, Wu, Z and Yu, X (2008b). Immunogenicity of recombinant Bacillus subtilis spores expressing Clonorchis sinensis tegumental protein. Parasitology Research 102: 293297.CrossRefGoogle ScholarPubMed