Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:10:58.492Z Has data issue: false hasContentIssue false

Effect of founder allele survival and inbreeding depression on litter size in a closed line of Large White pigs

Published online by Cambridge University Press:  02 September 2010

J. Rodrigáñez
Affiliation:
Departamento de Mejora Genética y Biotecnologia, INIA Ctra, La Coruña km 7, 28040 Madrid, Spain
M. A. Toro
Affiliation:
Departamento de Mejora Genética y Biotecnologia, INIA Ctra, La Coruña km 7, 28040 Madrid, Spain
M. C. Rodriguez
Affiliation:
Departamento de Mejora Genética y Biotecnologia, INIA Ctra, La Coruña km 7, 28040 Madrid, Spain
L. Silió
Affiliation:
Departamento de Mejora Genética y Biotecnologia, INIA Ctra, La Coruña km 7, 28040 Madrid, Spain
Get access

Abstract

An experimental herd of Large White pigs was established in 1931 and maintained as a closed population until 1992. The complete -pedigree (410 boars and 916 sows) has been analysed to measure along the succesive cohorts of breeding animals: thefounder representation and allele survival, the evolution ofcoancestry and inbreeding and the components of inbreeding due to each founder. Inferences about genetic and phenotypic parameters and effects of dam and litter inbreeding on litter size were obtained, using Bayesian techniques, from 2612 litter records. A significant mean reduction of 0·27 piglets born and 0·39 live born for each 10% of litter inbreeding was found but also evidence of variation among founder lineages in inbreeding depression. Alleles contributing to inbreeding depression were descendent from specific founder lineages.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballou, J. D. 1997. Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. journal ofHeredity. 88: 169178.CrossRefGoogle ScholarPubMed
Ballou, J. D. and Lacy, R. C. 1995. Identifying genetically important individuals for management of genetic variation in pedigreed populations. In Population management for survival and recovery. Analytical methods and strategies in population conservation (ed. Ballou, J. D., Gilpin, M. and Foose, T. J. R.) pp. 76111. Columbia University Press, New York.Google Scholar
Bidanel, J. P., Bolet, G., Blasco, A., Terqui, M., Martinat Botte, F. and Santacreu, M. A. 1997. Physiological aspects of genetic changes in reproductive traits in pigs and rabbits. Forty-eighth annual meeting of the European Association Animal Production, Vienna.Google Scholar
Boer, I. J. M. de and Hoeschele, I. 1993. Genetic evaluation methods for populations with dominance and inbreeding. Theoretical and Applied Genetics 86: 245258.CrossRefGoogle ScholarPubMed
Boichard, D., Maignel, L. and Verrier E. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genetics, Selection, Evolution. 29: 523.CrossRefGoogle Scholar
Charlesworth, D. and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics. 18: 237268.CrossRefGoogle Scholar
Chevalet, C. 1994. Utilisation du modele animal en presence d'effets genetiques non additifs. In Seminaire modele animal (ed. Foulley, J. L. and Molenat, M.), pp. 6774La Colle sur Loup, France.Google Scholar
Christensen, K., Fredholm, M., Winters, A. K., Jargensen, J. N. and Andersen, S. 1996. loint effect of 21 marker loci and effect of realized inbreeding on growth in pigs. Animal Science. 62: 541546.CrossRefGoogle Scholar
Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to quantitative genetics. Longman, Edinburgh.Google Scholar
Gandini, G. C., Leonarduzzi, R. and Bagnato, A. 1994. Allele survival in storage of gametes and embryos for conservation. Proceedings of the fifth world congress on applied to livestock production, Guelph, vol. 21, pp. 397400.Google Scholar
Geyer, C. J. 1992. Practical Markov Chain Monte Carlo (with discussion). Statistical Science. 7: 467511.Google Scholar
Groen, A. F., Kennedy, B. W. and Eissen, J. J. 1995. Potential bias in inbreeding depression estimates when using pedigree relationships to assess the degree of homozygosity for loci under selection. Theoretical and Applied Genetics. 91: 665671.CrossRefGoogle ScholarPubMed
Gu, Y., Haley, C. S. and Thompson, R. 1989. Estimates of genetic and phenotypic parameters of litter traits from closed lines of pigs. Animal Production. 49: 477482Google Scholar
Johnson, R. K. 1990. Inbreeding effects on reproduction, growth and carcass traits. In Genetics of swine (ed. Young, L. R.), pp. 107109. USDA, Lincoln.Google Scholar
Johnson, V. E. 1996. Studying convergence of Markov Chain Monte Carlo algorithms using coupled sample paths. Journal of the American Statistical Association 91: 154166.CrossRefGoogle Scholar
Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology. 8: 111123.CrossRefGoogle Scholar
Lacy, R. C. 1995. Clarification of genetic terms and their use i n the management of captive populations. Zoo Biology. 14: 565578.CrossRefGoogle Scholar
Lacy, R. C. 1997. Errata. Evolution 51: 1025.Google ScholarPubMed
Lacy, R. C., Alaks, G. and Walsh, A. 1996. Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution. 50: 21872200.CrossRefGoogle ScholarPubMed
MacCluer, J. W., Van de Berg, J. L., Read, B. and Ryder, O. A. 1986. Pedigree analysis by computer simulation. Zoo Biology. 5: 147160.CrossRefGoogle Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences the United States ofAmerica. 70: 33213323.CrossRefGoogle ScholarPubMed
Odriozola, M. 1976. Investigation sobre los datos acumulados en dos piaras experimentales. IRYDA, Madrid.Google Scholar
Rodriguez, M. C., Rodrigáñez, J. and Silió, L. 1994. Genetic analysis of maternal ability in Iberian pigs. Journal of Animal Breeding and Genetics. 111: 220227.CrossRefGoogle ScholarPubMed
Silverman, B. W. 1986. Density estimation for statistics and data analysis. Chapman and Hall, London.Google Scholar
Sollkner, J. and Filipcic, L. 1997. Genetic variability of population and similarity of subpopulation in cattle breeding evaluated by analysis of pedigrees. Forty-eighth annual meeting of the European Association for Animal Production, Vienna.Google Scholar
Templeton, A. R. and Read, B. 1984. Factors eliminating inbreeding depression in a captive herd of Spike's gazelle. Zoo Biology 3: 177199.CrossRefGoogle Scholar
Toro, M. A., Nieto, B. and Salgado, C. 1988. A note on minimization of inbreeding in small scale selection programmes. Livestock Production Science. 20: 317323.CrossRefGoogle Scholar
Ugarte, E., Urarte, E., Arrese, F., Arranz, J., Silid, L. and Rodriguez, M. C. 1996. Genetic parameters and trends for milk production of blond-faced Latxa sheep using Bayesian analysis. Journal of Dairy Science. 79: 22682277.CrossRefGoogle ScholarPubMed
Wang, C. S., Rutledge, J. J. and Gianola, D. 1994. Bayesian analysis in mixed linear model via Gibbs sampling with an application to litter size in Iberian pigs. Genetics, Selection, Evolution. 26: 91115.CrossRefGoogle Scholar
Woolliams, J. A. and Thompson, R. 1994. A theory of genetic contributions. Proceedings of thefifth world congress on genetics applied to livestock production, Guelph, vol. 19, pp. 127134.Google Scholar
Wright, S. 1951. The genetical structure of populations. Annals of Eugenics 15: 323354.CrossRefGoogle ScholarPubMed