Published online by Cambridge University Press: 18 August 2016
A review of work reported in the literature was used to present quantitative descriptions of energy dispositioning in the growing pig. These are detailed in the text, which points to preferred values, as well as to anomalies and lacunae. The review was prepared with the objective of allowing from its content the inclusive and quantitative modelling of energy requirement. Requirement is approached as the sum of the component factors; maintenance, protein retention and lipid retention. Conventional expressions of maintenance requirement, as some function of pig mass, were found unconvincing in their variety of expression of coefficients and exponents. The review concluded that maintenance is properly related to protein turn-over, and thereby requires at least to include elements of concomitant protein metabolic activity. It was also judged that maintenance costs might be farm-specific. The energy requirements for activity, gaseous losses and disease were identified as important, but unsatisfactory in their quantification. Exploration of the energy costs of uncomfortable ambient temperatures suggested that whilst the responses of the pig are open to sophisticated and relatively exact calculation, the description of comfort remained inexact. The efficiency of retention of lipid by direct incorporation was high and may comprise a substantial proportion of the dietary lipid supply. There was little evidence of variation in the efficiency of utilization of metabolizable energy from carbohydrate for lipid retention. The linear-plateau paradigm for protein retention was adopted. The efficiency of utilization of energy for protein retention measured by a variety of approaches was found to be highly variable, prone to error and the literature confused. It was concluded that the efficiency of use of metabolizable energy for protein retention would be a function of at least: (a) the absorbed substrate being metabolized for the synthesis of body protein, (b) the rate of total protein tissue turn-over associated with the retention of newly accreted protein and not already accounted in the estimate of maintenance, (c) the mass of protein tissue involved in turn-over, and (d) the degree of maturity attained, and any influence maturity may have upon the rate of turn-over of total body protein. Algorithms for energy requirement are presented based upon protein turn-over and these appear to have some consistency with empirical findings.