Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T22:07:18.385Z Has data issue: false hasContentIssue false

An evaluation of two ultrasonic instruments for the prediction of carcass lean grade in growing pigs

Published online by Cambridge University Press:  02 September 2010

J. Krieter
Affiliation:
Institute for Animal Breeding and Husbandry, Christian-Albrechts-University, 2300 Kiel, Olshausenstrasse, Germany
E. Kalm
Affiliation:
Institute for Animal Breeding and Husbandry, Christian-Albrechts-University, 2300 Kiel, Olshausenstrasse, Germany
Get access

Abstract

Ultrasonic probe data were available on 199 crossbred pigs (98 females, 101 barrows). These animals were probed at approximately 30, 50, 70, 100 and 120 kg live weight with two probing instruments (Krautkramer USM2, Combison 310) at three sites along the back. The measurements were examined as predictors of the proportion of valuable cuts (part dissection) and estimated lean concentration (at 100 and 120 kg live weight).

The standard deviations for proportion of valuable cuts (after correcting for sex effects) were 24·8, 26·7, 23·4, 27·1 and 29·4 g/kg at 30, 50, 70, 100 and 120 kg. Residual s.d. for predicting proportion of valuable cuts from live weight and ultrasonic probes (Combison, quotient fat to muscle area) were 190, 20·9, 19·3, 213 and 19·6. For the USM2, the residual s.d.s were 19·2, 26·3, 19·9, 25·1 and 24·6. Thus the Combison probe provided a better prediction of proportion of valuable cuts. The standard deviations of estimated lean concentration as determined by a Fat-O-Meater reflectance probe were 28·9 and 39·3 at 100 and 120 kg live weight. The residual s.d.s from live weight and ultrasonic measurements were 15·4 and 19·2 for the Combison probe and 21·5 and 20·5 for the USM2 probe. If the estimated lean concentration is accepted as a selection objective the value of ultrasonic probes as criteria in selection indices will increase.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blendl, H. M., Horst, P. and Petersen, J. 1980. Vergleichende Untersuchungen zur Aussagefähigkeit der Ultraschall-A- und B-Scan Verfahren über den Schlachtkörperwert am lebenden Schwein. 1. Mitteilung: Genauigkeit der Methode und Beurteilung der Schlachtkörperzusammensetzung. Züchtungskunde 52: 444455.Google Scholar
Branscheid, W., Sack, E. and Scholz, W. 1987. Die Klassifizierung von Schweinehhälften — Marktinstrument im Wandel. Schweinezucht und Schweinemast 35: 293296.Google Scholar
Kempster, A. J., Cuthbertson, A., Owen, M. G. and Alliston, J. C. 1979. A comparison of four ultrasonic machines (Sonatest, Scanogram, His Observer and Danscanner) for predicting the body composition of live pigs. Animal Production 29: 175181.Google Scholar
Mersmann, H. J. 1982. The utility of ultrasonic measurements in growing swine. Journal of Animal Science 54: 276284.CrossRefGoogle Scholar
Morel, P. C. 1987. Influence de la consommation journaliere d'aliment sur la croissance des pores: le cas d'une ligne maigre et d'une linee grasse. Ph.D. Thesis, ETH Zürich, No. 8339.Google Scholar
Sather, A. P., Tong, A. K. W. and Harbison, D. S. 1987. A study of ultrasonic probing techniques for swine. II. Prediction of carcass yield from the live pig. Canadian Journal of Animal Science 67: 381389.CrossRefGoogle Scholar
Sönnichsen, M. L. 1983. Parameterschätzung und Indexkonstruktion für die Populationen Landrasse B und Pietrain in Schleswig Holstein. Schriftenreihe des Institutes für Tierzucht und Tierrhaltung der Christian-AIbrechts-Universität, Heft 9.Google Scholar