Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T09:03:47.920Z Has data issue: false hasContentIssue false

Compensatory growth in Belgian Blue bulls previously grazed at two stocking rates: animal performance and meat characteristics

Published online by Cambridge University Press:  02 September 2010

J. L. Hornick
Affiliation:
Department of Animal Nutrition, B43
P. Raskin
Affiliation:
Department of Animal Nutrition, B43
A. Clinquart
Affiliation:
Department of Food Science (Meat Technology), B43 bis
I. Dufrasne
Affiliation:
Experimental Station, B39, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 400 Liège, Belgium
C. van Eenaeme
Affiliation:
Department of Animal Nutrition, B43
L. Istasse
Affiliation:
Department of Animal Nutrition, B43
Get access

Abstract

A comparison was made between fattening systems with Belgian Blue bulls of the double-muscle type, in order to assess the reponse in terms of compensatory growth when the bulls were grazed at a high stocking rate. Two groups of eight bulls were grazed on Lolium perenne and Trifolium repens pasture during an initial period of 135 days (period I). One group grazed at a stocking rate of six animals per ha allowing for normal growth at pasture (NGP); the other group grazed at stocking rate of 10 animals per ha (low growth at pasture, LGP). Both groups were then finished indoors (period II) with a concentrate based on dried sugar-beet pulp. Eight control bulls were also fattened indoors on the concentrate diet during periods I and II (CG). The bulls were slaughtered according to similar finishing fattening state. Live-weight gains were 1·47, 1·10 and 0·52 kg/day (P < 0·002) during period I in CG, NGP and LGP groups respectively. Corresponding live-weight gains during period II were 1·22, 1·37 and 1·50 kg/day (P > 0·05). The LGP group had lower food conversion ratios, slaughter weights (P < 0·05) and dressing proportions (P < 0·01). The meat from the grazed bulls had lower cooking losses (P < 0·05) and tended to have lower drip losses (P > 0·05) and higher tenderness (P > 0·05). It also had a higher cholesterol (P < 0·05) content. Large differences were observed in the fatty acid composition according to fat location (subcutaneous, intermuscular or intramuscular). The proportions of mono and polyunsaturated acids were increased in the fats of the animals previously grazed (P > 0·05, P < 0·05).

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Giraud, J. M. and Petit, M. 1986. Determination et utilisation de la note d'engraissement en elevage allaitant. Bull. Techn. CRZV Theix INRA. 66: 4350.Google Scholar
Arthur, P. F., Hearnshaw, H., Kohun, P. J. and Barlow, R. 1994. Evaluation of Bos indicus and Bos taurus straightbreds and crosses. I. Post-weaning growth of steers in different environments. Australian Journal of Agricultural Research 45: 783794.CrossRefGoogle Scholar
Association of Official Analytical Chemists. 1975. Official methods of analysis, 12th edition. Association of Official Analytical Chemists, Arlington, VA.Google Scholar
Butler, G. W. and Bailey, R. W. 1973. Chemistry and biochemistry of herbage, vol. 1. Academic Press, London.Google Scholar
Carstens, G. E., Johnson, D. E., Ellenberger, M. A. and Tahim, J. D. 1991. Physical and chemical components of the empty body during compensatory growth in beef steers. Journal of Animal Science 69: 32513264.CrossRefGoogle ScholarPubMed
Clinquart, A. 1995. Variation des performances zootechniques, des caractéristiques de la carcasse et des constituants plasmatiques chez le taurillon Blanc-Bleu-belge: influence de la conformation, de la vitesse de croissance et d'un complément de matiere grasse. These presentee en vue de I'obtention du grade d'Agrégé de I'Enseignement Supérieur, Faculté de Médecine Vétérinaire, Université de Liège.Google Scholar
Dagnelie, P. 1975. Theorie et tnethodes statistiques. Applications agronomiques, vol 2, pp 461. Les presses agronomiques de Gembloux, Gembloux.Google Scholar
Dawson, L. E. R. and Steen, R. W. J. 1997. In Extensification and product quality. E.U. workshop, Melle Gontrode Gent, 14–16th May.Google Scholar
Dufrasne, I., Gielen, M., Limbourg, P., Brundseaux, C. and Istasse, L. 1995. En Belgique, diverses modalités de pâturage pour des taurillons avant finition. Fourrages. 141: 7590.Google Scholar
Dufrasne, I., Gielen, M., Limbourg, P., Hornick, J.-L. and Istasse, L. 1994. Effets du chargement et de la période de complémentation au pâturage sur les performances de taurillons finis en stabulation. Annales de Medecine Veterinaire. 138: 561569.Google Scholar
Ender, K., Papstein, H. J., Nurnberg, K. and Wegner, J. 1997. In Extensification and product quality. E.U. workshop, Melle Gontrode Gent, 14–16th May.Google Scholar
Etherington, D. J. and Bailey, A. J. 1982. Metabolism of rat skin collagen: the effect of arrested development and subsequent catch-up growth on the stability of the connective tissue fibers. Collagen and Related Research. 2: 507522.CrossRefGoogle ScholarPubMed
Gielen, M., Limbourg, P., Bienfait, J. M. and Istasse, L. 1986. Croissance compensatrice et anabolisation des taureaux engraissés après une saison de pâturage. Revue de I'Agriculture. 39: 12271245.Google Scholar
Hornick, J. L., Eenaeme, C. van, Clinquart, A., Diez, M. and Istasse, L. 1998. Different periods of feed restriction before compensatory growth in Belgian Blue bulls. I. Animal performance, nitrogen balance, meat characteristics, and fat composition. Journal of Animal Science. 76: 249259.CrossRefGoogle ScholarPubMed
Horton, G. M. J. 1978. Compensatory growth by beef cattle at grassland or on an alfalfa-based diet. Journal of Animal Science. 46: 297302.CrossRefGoogle Scholar
Institut Economique Agricole. 1995. Annuaire de Statistiques Agricoles. Ministere des Classes Moyennes et de I'Agriculture, Brussels.Google Scholar
Leat, W. M. F. 1983. The pools of tissue constituents and products: adipose tissue and structural lipids. In Dynamic biochemistry ofanimal production (ed. Riis, P. M.), pp. 109136. Elsevier, Oxford.Google Scholar
Manner, W. N., Maxwell, R. J. and Williams, J. E. 1984. Effects of dietary regimen and tissue site on bovine fatty acid profiles. Journal of Animal Science. 59: 109121.CrossRefGoogle Scholar
Martin, S. and Torreele, G. 1962. L'appréciation de la qualité des carcasses bovines par la découpe du segment tricostal 7–8–9. Annales de Zootechnie. 11: 217224.CrossRefGoogle Scholar
Minet, V., Clinquart, A., Hornick, J. L., Eenaeme, C. van, Evrard, M. and Istasse, L. 1998. Relationships between meat quality or composition and animal performance in double muscled Belgian Blue bulls. Proceedings of the British Society of Animal Science, 1998, p. 15.Google Scholar
Rompala, R. E., Jones, S. D. M., Buchanan-Smith, J. G. and Bayley, H. S. 1985. Feedlot performance and composition of gain in late-maturing steers exhibiting normal and compensatory growth. Journal of Animal Science. 61: 637646.CrossRefGoogle Scholar
Steen, R. W. J. 1994. A comparison of pasture grazing and storage feeding, and the effects of sward surface height and concentrate supplementation from 5 to 10 months of age on the lifetime performance and carcass composition of bulls. Animal Production 58: 209219.CrossRefGoogle Scholar
Ter Meulen, V. U., Nordbeck, H. and Molnar, S. 1975. Untersuchungen zur Morphologie und Physiologie des Perirenalen Fettgewebes beim Kalb und der Einfluss der Umgebungstemperatur auf seine Funktion. 2. Mitteilung Methodik und Versuchsergebnisse. Zeitschrift fur Tierphysiologie, Tiererniihrung und Futtermittelkunde. 35: 144163.CrossRefGoogle Scholar
Tudor, G. D., Utting, D. W. and O'Rourke, P. K. 1980. The effect of pre- and post-natal nutrition on the growth of beef cattle. III. The effect of severe restriction in early post-natal life on the development of the body components and chemical composition. Australian Journal of Agricultural Research. 31: 191204.CrossRefGoogle Scholar
Wilson, P. N. and Osbourn, D. F. 1960. Compensatory growth after undernutrition in mammals and birds. Biological Review 35: 324363.CrossRefGoogle ScholarPubMed
Yambayamba, E. S. K., Price, M. A. and Foxcroft, G. R. 1996. Hormonal status, metabolic changes, and resting metabolic rate in beef heifers undergoing compensatory growth. Journal of Animal Science. 74: 5769.CrossRefGoogle ScholarPubMed