Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:52:08.388Z Has data issue: false hasContentIssue false

Effect of diet forage to concentrate ratio on rumen degradability and post-ruminal availability of protein from fresh and dried lucerne

Published online by Cambridge University Press:  18 August 2016

J. Faría-Mármol
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
J. González*
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
C.A. Rodríguez
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
M. R. Alvir
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
*
Corresponding author e-mail: jgonzalez@pam.etsia.upm.es
Get access

Abstract

The ruminal degradation of dry matter (DM) and crude protein (CP) and the intestinal availability of CP of four lucerne samples were measured on two diets with lucerne hay to concentrate ratios of 2: 1 (diet F) and 1: 2 (diet C). Two samples of fresh lucerne (third cut) harvested after 2 (FL1) or 8 (FL2) weeks from the previous cut were used together with a sample of lucerne hay (LH) and another of dehydrated lucerne (DL). Rumen degradability, measured by the nylon bag technique, and rumen outflow rates were determined on three rumen cannulated wethers. Intestinal digestibility was determined by the mobile bag technique on three duodenal fistulated wethers. For CP, significantly lower values were observed with diet C than with diet F for the potentially degradable insoluble fraction (0·334 v. 0·397) and its degradation rate (0·093 v. 0·134 per h). As a consequence, the effective degradability was also lower with diet C (0·746 v. 0·821; P = 0·059). Effective degradability of DM was also apparently lower with diet C (0·596 v. 0·634). With both diets, the intestinal digestibility decreased in all the samples with increase of ruminal incubation time according to a simple exponential equation. The undegraded CP digested in the gut (Di) and therefore the effective intestinal digestibility (EID) were derived from this exponential function according to the rumen outflow of undegraded CP. Mean values of Di (expressed as proportion of food CP content) were respectively 0·091 and 0·142 for F and C diets and 0·084, 0·115, 0·116, and 0·152 for FL1, FL2, LH and DL samples. Lower rumen degradability was partially compensated for by higher Di values resulting in a close correlation between both parameters (r = –0·965; P 0·001). The change of the digestion site associated with the reduction of the effective degradability of CP produced also an increase in the undigested CP as a proportion of food CP. So, these values are respectively 0·087 and 0·112 for F and C diets and 0·053, 0·109, 0·096, and 0·141 for FL1, FL2, LH, and DL samples. No difference in EID between F and C diets was observed (0·529 v. 0·563). For samples, the only effect (P 0·05) was recorded between FL1 (0·618) and the other samples (0·509, 0·544 and 0·512 for FL2, LH, and DL, respectively).

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural and Food Research Council. 1992. Nutritive requirements of ruminant animals: protein. Technical Committee on Responses to Nutrients. Report no. 9. Nutrition Abstracts and Reviews, Series B 62: 787835.Google Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis 15th edition. Association of Official Analytical Chemists, Washington, DC.Google Scholar
Aufrère, J., Boulbehane, D. and Graviou, D. 1994. Dégradation dans le rumen de l’azote des parois d’une même luzerne, verte ou ensilée. Annales de Zootechnie 43: 273.CrossRefGoogle Scholar
Beckers, Y., Théwis, A. and Maudoux, B. 1996. Intestinal digestibility of rumen undegraded N of concentrates measured by the mobile nylon bag technique. Animal Feed Science and Technology 61: 305323.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. and Harrison, D. G. 1971. The effects of drying and comminution of red clover and its subsequent digestion by sheep. Proceedings of the Nutrition Society 30: 86A.Google ScholarPubMed
Broderick, G. A. 1985. Alfalfa silage or hay versus corn silage as the sole forage for lactating dairy cows. Journal of Dairy Science 68: 32623271.CrossRefGoogle Scholar
Coelho da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. and Armstrong, D. G. 1972. The effect in sheep of physical form on sites of digestion of dried lucerne diet. British Journal of Nutrition 28: 4361.CrossRefGoogle ScholarPubMed
Dhanoa, M. S., Siddons, R. C., France, J. and Gale, L. 1985. A multicompartmental model to describe marker excretion patters in ruminant faeces. British Journal of Nutrition 53: 663671.CrossRefGoogle Scholar
Elizalde, J. C., Merchen, N. R. and Faulkner, D. B. 1999. Supplemental cracked corn for steers fed fresh alfalfa. II. Protein and amino acid digestion. Journal of Animal Science 77: 467475.CrossRefGoogle ScholarPubMed
Ganev, G., Ørskov, E. R. and Smart, R. 1979. The effect of roughage or concentrate feeding and rumen retention time on total degradation of protein in the rumen. Journal of Agricultural Science, Cambridge 93: 651656.CrossRefGoogle Scholar
González, J., Rodríguez, C. A., Andrés, S. G. and Alvir, M. R. 1998. Rumen degradability and microbial contamination of fish meal and meat meal measured by the in situ technique. Animal Feed Science and Technology 73: 7184.CrossRefGoogle Scholar
González, J., Sánchez, L. and Alvir, M. R. 1999. Estimation of intestinal digestibility of undegraded sunflower meal protein from nylon bag measurements. A mathematical model. Reproduction, Nutrition and Development 39: 607616.CrossRefGoogle ScholarPubMed
Hogan, J. P. 1973. Intestinal digestion of subterranean clover by sheep. Australian Journal of Agricultural Research 24: 587598.CrossRefGoogle Scholar
Huhtanen, P. and Khalili, H. 1990. The effect of sucrose supplements on microbial polysaccharidase activities associated with rumen particulate material. Proceedings of a satellite symposium of the seventh international symposium on ruminant physiology, Tokyo (ed. S. Hoshino, Onoderz, R. Minato, H. and Itabashi, H.), pp. 121128.Google Scholar
Huntington, J. A. and Givens, D. I. 1995. The in situ technique for studying the rumen degradation of feeds: a review of the procedure. Nutrition Abstracts and Reviews, Series B 65: 6393.Google Scholar
Hvelplund, T. 1985. Digestibility of rumen microbial protein and undegraded dietary protein estimated in the small intestine of sheep and by in sacco procedure. Acta Agriculturæ Scandinavica 25: 132144.Google Scholar
Jarosz, L., Hvelplund, T., Weisbjerg, M. R. and Jensen, B. B. 1994. True digestibility of protein in the small intestine and the hind gut of cows measured with the mobile bag technique using 15N labelled roughage. Acta Agriculturæ Scandinavica, Section A, Animal Science 44: 146151.Google Scholar
MacRae, J. C. and Ulyatt, M. J. 1974. Quantitative digestion of fresh herbage by sheep. 2. The site of digestion of some nitrogenous constituents. Journal of Agricultural Science, Cambridge 82: 309319.CrossRefGoogle Scholar
Merchen, N. R. and Satter, L. D. 1983. Digestion of nitrogen by lambs fed alfalfa conserved as baled hay or as low moisture silage. Journal of Animal Science 56: 943951.CrossRefGoogle Scholar
National Research Council. 1988. Nutrients requirements of dairy cattle, sixth edition. National Academy Press, Washington, DC.Google Scholar
Ørskov, E. R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92: 499503.CrossRefGoogle Scholar
Peltekova, V. D. and Broderick, G. A. 1996. In vitro ruminal degradation and synthesis of protein on fractions extracted from alfalfa hay and silage. Journal of Dairy Science 79: 612619.CrossRefGoogle ScholarPubMed
Pereira, J. C., Carro, M. D., González, J., Alvir, M. R. and Rodríguez, C. A. 1998. Rumen degradability and intestinal digestibility of brewers’ grains as affected by origin and heat treatment and of barley rootlets. Animal Feed Science and Technology 74: 107121.CrossRefGoogle Scholar
Prestløkken, E. 1999a. In situ ruminal degradation and intestinal digestibility of dry matter and protein in expanded feedstuffs. Animal Feed Science and Technology 77: 123.CrossRefGoogle Scholar
Prestløkken, E. 1999b. Ruminal degradability and intestinal digestibility of protein and amino acids in barley and oats expander-treated at various intensities. Animal Feed Science and Technology 82: 157175.CrossRefGoogle Scholar
Repetto, J. L., González, J. and Cajarville, C. 2000. Effect of dehydration on ruminal degradability of lucerne. Annales de Zootechnie 49: 113118.CrossRefGoogle Scholar
Robertson, J. B. and Van Soest, P. J. 1981. The detergent system of analysis and its application to human foods. In The analysis of dietary fibre in food (ed. W. James, P. T. and Theander, O.), pp. 123158. Marcel Dekker, New York.Google Scholar
Rodríguez, C. A. 1996. Estudio de la colonización microbiana de los alimentos en el rumen. Implicaciones sobre la estimación de la degradabilidad ruminal de las materias nitrogenadas mediante técnicas in situ. Ph.D. thesis, Universidad Politécnica de Madrid, Spain.Google Scholar
Straalen, W. M.van, Dooper, F. M. H., Antoniewicz, A. M., Kosmala, I. and Vuuren, A. M. van. 1993. Intestinal digestibility in dairy cows of protein from grass and clover measured with mobile nylon bag and other methods. Journal of Dairy Science 76: 29702981.CrossRefGoogle ScholarPubMed
Tas, M. V, Evans, R. A. and Axford, R. F. E. 1981. The digestibility of amino acids in the small intestine of the sheep. British Journal of Nutrition 45: 167174.CrossRefGoogle ScholarPubMed
Vanhatalo, A., Aronen, I. and Varvikko, T. 1995. Intestinal nitrogen digestibility of heat-moisture treated rape seed meals as assessed by the mobile bag method in cows. Animal Feed Science and Technology 55: 139152.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Verité, R., Michalet Doreau, B., Chapoutot, P., Peyraud, J. L. and Poncet, C. 1987. Revision du systéme des protéines digestibles dans l’intestin (PDI). Bulletin Technique, CRZV, Theix, INRA 70: 1934.Google Scholar
Voigt, J., Piatkowski, B., Engelmann, H. and Rudolph, E. 1985. Measurement of the postruminal digestibility of crude protein by the bag technique in cows. Archiv für Tierernährung 8: 555562.CrossRefGoogle Scholar
Yang, W. Z. and Poncet, C. 1988. Mesure de la digestion de l’azote alimentaire dans les differentes parties du tube digestif du mouton par la technique des sachets de nylon. Reproduction, Nutrition, Développement 28: 125126.CrossRefGoogle Scholar