Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T04:18:00.698Z Has data issue: false hasContentIssue false

Effect of reducing energy supply during the finishing of Belgian Blue double-muscled cull cows

Published online by Cambridge University Press:  18 August 2016

J. F. Cabaraux
Affiliation:
Nutrition Unit, B43, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
O. Dotreppe
Affiliation:
Nutrition Unit, B43, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
I. Dufrasne
Affiliation:
Experimental Station, B39, Experimental Station, B39, Experimental Station, B39, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
A. Clinquart
Affiliation:
Food Technology Laboratory, B43 bis, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
L. Istasse
Affiliation:
Nutrition Unit, B43, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
J. -L. Hornick*
Affiliation:
Nutrition Unit, B43, Department of Food Science; Faculty of Veterinary Medicine, Liège University, Sort Tilman, B-4000 Liège, Belgium
*
Get access

Abstract

A 4-year experiment has been conducted on finishing Belgian Blue cull cows of double-muscled type in order to study the effects of diets containing adequate levels of metabolizable protein, but either normal (NENP), low (LENP) or medium (MENP) levels of metabolizable energy, on animal performance, carcass and meat characteristics, and plasma metabolites and hormones. The LENP diet was offered during the whole (LENP group) or second half of the finishing (NENP-LENP groups), and the MENP diet during the whole finishing (MENP group). The degree of fatness required for the slaughter of animals from NENP groups was close to 4-5 (scale from 0 (very lean) to 5 (very fat)). In each underfed group, the slaughter of the animals was synchronized to that of NENP cows, by degressive degree of fatness. The same duration of finishing was thus obtained for all groups.

The experimental feeding strategies reduced the amounts of fat deposited in the carcass and the meat while muscle deposition was remarkably preserved. The proportions of saturated and monounsaturated fatty acids in intramuscular fat were also decreased while their proportions increased in plasma free fatty acids. Plasma insulin levels were also reduced and those ofIGF-1 were, surprisingly, maintained. The low energy diet promoted thus the settlement of a discrete lipolytic state while high levels ofIGF-1 preserved muscle deposition. This feeding strategy should be evaluated in other breeds of cattle.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Giraud, J. M. and Petit, M. 1986. Détermination et utilisation de la note d'état d'engraissement en elevage allaitant. Bulletin Technique du Centre de Recherches Zootechniques et Vétérinaires de Theix, INRA 66: 4350.Google Scholar
Association of Official Analytical Chemists. 1975. Official methods of analysis, 12th edition (ed. Horwitz, H.). AOAC, Washington, DC.Google Scholar
Baumann, D. E. and Currie, W. B. 1980. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science 63: 15141529.Google Scholar
Breier, B. H., Bass, J. J., Butler, J. H. and Gluckman, P. D. 1986. The somatotrophic axis in young steers: influence of nutritional status on pulsatile release of growth hormone and circulating concentrations of insulin-like growth factor-1. journal of Endocrinology 111: 209215.Google Scholar
Buonomo, F. C. and Baile, C. A. 1990. The neurophysiological regulation of growth hormone secretion. Domestic Animal Endocrinology 7: 435450.Google Scholar
Cabaraux, J. F., Kerrour, M., Eenaeme, C. van, Dufrasne, I., Istasse, L. and Hornick, J. -L. 2003. Different modes of food restriction and compensatory growth in double-muscled Belgian Blue bulls: plasma metabolites and hormones. Animal Science 77: 205214.Google Scholar
Chilliard, Y. 1993. Dietary fat and adipose tissvie metabolism in ruminants, pigs, and rodents: a review. Journal of Dairy Science 76: 38973931.Google Scholar
Clinquart, A., Eenaeme, C. van, Mayombo, A. P., Gauthier, S. and Istasse, L. 1995. Plasma hormone and metabolites in relation to breed (Belgian Blue ν. Holstein) and conformation (double-muscled ν. dual-purpose type). Veterinary Research Communications 19: 185194.Google Scholar
Closset, J., Maghuin-Rogister, G., Tran Quang, Minh, Lambot, O. and Hennen, G. 1986. Immunological growth promotion of bulls by a synthetic vaccine inhibiting the endogeneous somatostatin. Proceedings of the 32nd European meeting of meat research workers, Ghent, p. 19.Google Scholar
Daughaday, W. H., Yanow, C. E. and Kapania, M. 1986. Insulin-like growth factors-I and -II in maternal and fetal guinea pig serum. Endocrinology 119: 490494.Google Scholar
Decruyenaere, V., Fabry, J., Leconte, Ph., Sindic, M. and Bartiaux-Thill, N. 1999. Finition de la vache de réforme de type Blanc-Bleu-Belge culard (BBB): engraissement á l'auge ou en prairie, performances zootechniques et qualité de la viande. Sixieme rencontres autour des recherches sur les ruminants, Paris, let 2 décembre 1999, vol. 6, p. 274.Google Scholar
Dumont, R., Roux, M., Agabriel, J., Touraille, C., Bonnemaire, J., Malterre, C. and Robelin, J. 1991. Engraissement des vaches de réforme de race Charolaise: Facteurs de variation des performances zootechniques, de la composition tissulaire des carcasses et de la qualité organoleptique de la viande. INRA Productions Animales 4: 271286.CrossRefGoogle Scholar
Eenaeme, C. van, Baldwin, P., Istasse, L., Lambot, O., Gielen, M. and Bienfait, J. M. 1986. L'ensilage de pulpes surpressées mélangées au glutenfeed pour l'engraissement de taurillons précoces. Annates de Medecine Vétérinaire 130: 359372.Google Scholar
Eenaeme, C. van, Clinquart, A., Uytterhaegen, L., Hornick, J. L., Demeyer, D. and Istasse, L. 1994. Post mortem activity in relation to muscle protein turnover in Belgian Blue bulls with different growth rates. Sciences des Aliments 14: 475483.Google Scholar
Elsasser, T. H., Rumsey, T. S. and Hammond, A. C. 1989. Influence of diet on basal and growth hormone-stimulated plasma concentration of IGF-I in beef cattle. Journal of Animal Science 67: 128141.Google Scholar
Fattet, I., Hovell, F. D. DeB., Ørskov, E. R., Kyle, D. J., Pennie, K. and Smart, R. I. 1984. Undernutrition in sheep. The effect of supplementation with protein on protein accretion. British Journal of Nutrition 52: 561574.Google Scholar
Fiems, L. O., Campeneere, S. de, Caelenbergh, W. van, Boever, J. L. de and Vanacker, J. M. 2003. Carcass and meat quality in double-muscled Belgian Blue bulls and cows. Meat Science 63: 345352.CrossRefGoogle ScholarPubMed
Francis, S. M., Littlejohn, R. P., Stuart, S. K., Veenvliet, B. A. and Suttie, J. M. 2000. The effect of restricted feeding on growth hormone (GH) secretory patterns in genetically lean and fat wether lambs. Animal Science 70: 425433.Google Scholar
Hayden, J. M., Williams, J. E. and Collier, R. J. 1993. Plasma growth hormone, insulin-like growth factor, insulin, and thyroid hormone association with body protein and fat accretion in steers undergoing compensatory gain after dietary energy restriction. Journal of Animal Science 71: 33273338.Google Scholar
Henry, R. J., Cannon, D. C. and Winkelman, J. W. 1974. Clinical chemistry. Principles and technics. Harper and Row, New York.Google Scholar
Hornick, J. L., Eenaeme, C. van, Clinquart, A., Diez, M. and Istasse, L. 1998a. Different periods of feed restriction before compensatory growth in Belgian Blue bulls. I. Animal performance, nitrogen balance, meat characteristics, and fat composition. Journal of Animal Science 76: 249259.Google Scholar
Hornick, J. L., Eenaeme, C. van, Diez, M., Minet, V. and Istasse, L. 1998b. Different periods of feed restriction before compensatory growth in Belgian Blue bulls. II. Plasma metabolites and hormones. Journal of Animal Science 76: 260271.CrossRefGoogle ScholarPubMed
Hornick, J. L., Raskin, P., Clinquart, A., Dufrasne, I., Eenaeme, C. van and Istasse, L. 1998c. Compensatory growth in Belgian Blue bulls previously grazed at two stocking rates: animal performance and meat characteristics. Animal Science 67: 427434.Google Scholar
Hovell, F. D. DeB., Ørskov, E. R., MacLeod, N. A. and McDonald, I. 1983. The effect of changes in the amount of energy infused as volatile fatty acids on the nitrogen retention and creatinine excretion of lambs wholly nourished by intragastric infusion. British Journal of Nutrition 50: 331343.CrossRefGoogle ScholarPubMed
Institut National de la Recherche Agronomique. 1978. Alimentation des ruminants. INRA, Paris.Google Scholar
Institut National de la Recherche Agronomique. 1988. Alimentation des bovins, ovins et caprins. INRA, Paris.Google Scholar
King, D. A., Dikeman, M. E., Wheeler, T. L., Kastner, C. L. and Koohmaraie, M. 2003. Chilling and cooking rate effects on some myofibrillar determinants of tenderness of beef. Journal of Animal Science 81: 14731481.Google Scholar
McKinnon, J. J., Cohen, R. D. H., Jones, S.D., Laarveld, B. and Christensen, D. A. 1993. The effects of dietary energy and crude protein concentration on growth and serum insulin-like growth factor-1 levels of cattle that differ in mature body size. Canadian Journal of Animal Science 73: 303313.Google Scholar
Malterre, C., Robelin, J., Agabriel, J. and Bordes, P. 1989. Engraissement des vaches de réforme de race Limousine. INRA Productions Animales 2: 325334.Google Scholar
Maltin, C., Balcerzak, D., Tilley, R. and Delday, M. 2003. Determinants of meat quality: tenderness. Proceedings of the Nutrition Society 62: 337347.Google Scholar
Martin, S. and Torreele, G. 1962. L'appréciation de la qualité des carcasses bovines par la découpe du segment tricostal 7,8,9. Annates de Zootechnie 11: 217224.Google Scholar
Monin, G. 1991. Facteurs biologiques des qualités de la viande bovine. INRA Productions Animales 4: 151160.Google Scholar
Müller, H. W. and Binz, K. 1982. Glass capillary gas chromatography of the serum fatty acids fraction via automatic injections of lipid extracts. Journal of Chromatography and Biomedical Applications 228: 7593.Google Scholar
Ørskov, E. R. and MacLeod, N. A. 1982. The determination of the mineral nitrogen excretion in steers and dairy cows and its physiological and practical implications. British Journal of Nutrition 47: 625636.Google Scholar
Palmer, D. W. and Peters, J. T. 1969. Automated determination of free amino groups in serum and plasma using 2, 4, 6-trinitrobenzene sulfonate. Clinical Chemistry 19: 891901.Google Scholar
Roberts, A. J., Nugent III, R. A., Klindt, J. and Jenkins, T. G. 1997. Circulating insulin-like growth factor I, insulin-like growth factor binding proteins, growth hormone, and resumption of estrus in postpartum cows subjected to dietary energy restriction. Journal of Animal Science 75: 19091917.CrossRefGoogle ScholarPubMed
Roux, M., Dumont, R., Agabriel, J., Bonnemaire, J. and Micol, D. 1993. Engraissement des vaches de réforme de race Charolaise: Effet d'une suralimentation protéique sur les performances d'engraissement et les caractéristiques physico-chimiques musculaires. INRA Productions Animales 6: 237248.Google Scholar
Sano, H., Takebayashi, A., Kodama, Y., Nakamura, K., Ito, H., Anno, Y., Fujita, T., Takahashi, H. and Ambo, K. 1999. Effects of feed restriction and cold exposure on glucose metabolism in response to feeding and insulin in sheep. Journal of Animal Science 77: 25642573.Google Scholar
Service Public Fédéral-Economie, P. M. E., Classes moyennes et Energie, Statistique et Information Economique. 2003a. Statistiques agrkoles. Bruxelles.Google Scholar
Service Public Fédéral-Economie, P. M. E., Classes moyennes et Energie, Statistique et Information Economique. 2003b. Recensement agricole au 15 mai 2002. Bruxelles.Google Scholar
Sinclair, K. D., Lobley, G. E., Horgan, G. W., Kyle, D. J., Porter, A. D., Matthews, K. R., Warkup, C. C. and Maltin, C. A. 2001. Factors influencing beef eating quality. 1. Effects of nutritional regimen and genotype on organoleptic properties and instrumental texture. Animal Science 72: 269277.Google Scholar
Statistical Analysis Systems Institute. 2000. SAS/STAT user's guide, version 8. SAS Institute Inc., Cary, NC.Google Scholar
Taylor, P. L. 1987. Munro. Hormone pulse profile analysis. Elsevier, Amsterdam.Google Scholar
Ter Meulen, V. U., Nordbeck, H. and Molnar, S. 1975. Untersuchungen zur Morphologie und Physiologie der Perirenalen Fettgewebes beim Kalb und der Einfluss der Umgebungstemperatur auf seine Funktion. 2. Mitteilung Methodik und Versuchsergebnisse. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 35: 144163.CrossRefGoogle Scholar
Uytterhaegen, L., Claeys, E., Demeyer, D., Lippens, M., Fiems, L. O., Boucque, Ch. V., Voorde, G. van de and Bastiaens, A. 1994. Effects of double-muscling on carcass quality, beef tenderness and myobrillar protein degradation in Belgian Blue White bulls. Meat Science 38: 255267.Google Scholar
Vernon, R. G., Barber, M. C. and Travers, M. T. 1999. Développements récents dans lesétudes de la lipogenèse chez l'homme et chez les animaux. INRA Productions Animates 12: 319327.CrossRefGoogle Scholar
Yambayamba, E. S. K., Price, M. A. and Foxcroft, G. R. 1996. Hormonal status, metabolic changes, and resting metabolic rate in beef heifers undergoing compensatory growth. Journal of Animal Science 74: 5769.Google Scholar