Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T15:40:47.547Z Has data issue: false hasContentIssue false

Effect of rumen-protected supplements of fish oil on intake, digestibility and nitrogen balance of growing goats

Published online by Cambridge University Press:  18 August 2016

J. R. Fernández
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
M. Rodríguez Osorio
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
E. Ramos
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
G. de la Torre
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
F. Gil Extremera
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
M. R. Sanz Sampelayo*
Affiliation:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Unidad de Nutrición Animal, Profesor Albareda, 1,18008 Granada, Spain
*
Get access

Abstract

Two groups of six male goats were used to assess the effects of rumen-protected supplements offish oil on intake, digestibility and nitrogen (N) balance. The animals were offered a diet consisting of forage and concentrate, the latter fraction supplemented with 0 (control) or lOOg/kg of rumen-protected fish oil supplement (PFO), containing a high proportion of the n-3 series (whole diet contained 0 or 60 g PFO per kg dry matter). No significant differences (P > 0.05) were found between the two groups concerning live-weight gain, food intake, digestibility of DM, organic matter, N, neutral-detergent fibre and energy. In contrast, there were differences (P < 0.05) regarding the digestibility of fat and of acid-detergent fibre, which were higher among the animals given the PFO diet. With respect to the individual fatty acids, we observed higher digestibility (P < 0.05) of C14:0, C16:0, C18:0 and C20:0 among the animals given the PFO diet. The digestibility of C14:0, C18:0 and C20:0 was found to be negative among the animals given the control diet. No significant differences (P > 0-05) were found regarding digestibility of total C18:1. In contrast, the coefficients for C18:2 (n-6) and C18:3 (n-3) were higher (P < 0.05) among the non-supplemented animals. The intake and faecal flow values of C18:0 suggest that the mono- and polyunsaturated fatty acids with 18 atoms of carbon may, in both cases, undergo partial hydrogenation, which would be greater among the control group. The utilization of C20:5 (n-3) and, especially, of C22 : 6 (n-3), which were consumed only by the animals given the PFO diet, was estimated at 1-000. The PFO diet also produced lower levels ofurinary-N excretion (P < 0.05), giving rise to higher N balances (P < 0.05).

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AbuGhazaleh, A. A. and Jenkins, T. C. 2004. Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. Journal of Dairy Science 87: 645651.Google Scholar
Aguilera, J. E., Lara, L., Molina, E. and Prieto, C. 1991. Energy balance studies with growing Granadina goats during fasting and maintenance. Small Ruminant Research 5: 109115.Google Scholar
Ashes, J. R., Siebert, B. D., Gulati, S. K., Cuthbertson, A. Z. and Scott, T. W. 1992. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids 277: 629631.Google Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition. AOAC, Washington, DC.Google Scholar
Baldi, A., Cheli, F., Corino, C., Dell'Orto, V. and Polidori, F. 1992. Effects of feeding calcium salts of long chain fatty acids on milk yield, milk composition and plasma parameters of lactating goats. Small Ruminant Research 6: 303310.CrossRefGoogle Scholar
Bock, B. J., Harmon, D. L., Brandt , R. T. Jr and Schneider, J. E. 1991. Fat source and calcium level effects on finishing steer performance, digestion, and metabolism. Journal of Animal Science 69: 22112224.Google Scholar
Boza, J., Pérez Martínez, L. and Sanz Sampelayo, M. R. 2000. Producto y procedimiento de obtención de una grasa protegida para incluir en las dietas de los rumiantes. Patente de inventión no, 2. 136536.Google Scholar
Burke, J. M., Staples, C. R., Risco, C. A., Sota, R. L. and Thatcher, W. W. 1997. Effect of ruminant grade menhaden fish meal on reproductive and productive performance of lactating dairy cows. Journal of Dairy Science 80: 33863398.CrossRefGoogle ScholarPubMed
Clapperton, J. L. and Steele, W. 1983. Fat supplementation in animal production ruminants. Proceedings of the Nutrition Society 42: 243.Google Scholar
Davenport, G., Boling, G., Gay, N. and Bunting, L. 1987. Effect of soybean lipid on growth and ruminal nitrogen metabolism in cattle fed soybean meal or ground whole soybean. Journal of Animal Science 65: 16801689.Google Scholar
Daviglus, M. L., Stamler, J., Orencia, A. J., Dyer, A. R., Liu, K., Greenland, P., Walsh, M. K., Morris, D. and Sekelle, R. B. 1997. Fish consumption and the 30-years risk of fatal myocardial infarction. New England Journal of Medicine 336: 10461053.Google Scholar
Doreau, M. and Chilliard, I. 1997. Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reproduction, Nutrition, Development 37: 113124.Google Scholar
Enjalbert, F., Moncoulon, R., Vernay, M. and Griess, D. 1994. Effects of different forms of polyunsaturated fatty acids on rumen fermentation and total nutrient digestibility of sheep fed prairie hay based diets. Small Ruminant Research 14: 127135.Google Scholar
Fallon, R. J., Williams, P. E. V. and Innes, G. M. 1986. The effects on feed intake, growth and digestibility of nutrients of including calcium soaps of fat in diets for young calves. Animal Feed Science and Technology 14: 103115.Google Scholar
Ferlay, A., Chabrot, J., Elmeddah, Y. and Doreau, M. 1993. Ruminal lipid balance and intestinal digestion by dairy cows fed calcium salts of rapeseed oil fatty acids or rapeseed oil. Journal of Animal Science 71: 22372245.Google Scholar
Fievez, V. I., Van Nevel, C. J. and Demeyer, D. I. 2000. Lipolysis and biohydrogenation of PUFA's from fish oil during in vitro incubations with rumen contents. Proceedings of the Nutrition Society 59: 193A.Google Scholar
Forbes, J. M. 1986. Dietary factors affecting intake. In The voluntary feed intake of farm animals (ed. Forbes, J. M.), pp. 85113. Butterworths, London.Google Scholar
Franklin, S. T., Martin, K. R., Baer, R. J., Shingoethe, D. J. and Hippen, A. R. 1999. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. Journal of Nutrition 192: 20482052.Google Scholar
Grummer, R. R. 1991. Effect of feed on the composition of milk fat. Journal of Dairy Science 74: 32443257.Google Scholar
Grummer, R. R. 1988. Influence of prilled fat and calcium salts of palm oil fatty acids on ruminal fermentation and nutrient digestibility. Journal of Dairy Science 71: 117123.Google Scholar
Gulati, S. K., Ashes, J. R. and Scott, T. W. 1999. Hydrogenation of eicosapentaenoic and docosahexaenoic acids and their incorporation into milk fat. Animal Peed Science and Technology 79: 5764.CrossRefGoogle Scholar
Hermansen, J. E. and Lund, P. 1990. Fatty acid composition and milk quality related to feeding Ca-saponified palm acid oil to different breeds of dairy cows. Journal of Dairy Research 57: 2331.CrossRefGoogle Scholar
Jenkins, T. C. and Palmquist, D. L. 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science 67: 978986.Google Scholar
Kadzere, C. T. and Jingura, R. 1993. Digestibility and nitrogen balance in goats given different levels of crushed whole soybeans. Small Ruminant Research 10: 175180.Google Scholar
Lessire, M., Doreau, M. and Aumaitre, A. 1992. Utilisation digestive et métabolique des corps gras chez les animaux domestiques. In Manuel des Corps Gras, pp. 683694. Lavoisier, Paris.Google Scholar
Martín Alonso, J. J. 2004. [Preparation against ruminal metabolism of a protected fat rich in polyunsaturated fatty acids. Its utilisation with the aim of obtaining a healthier milk.] Ph. D. thesis, University of Granada.Google Scholar
Ney, D. M. 1991. Potential for enhancing the nutritional properties of milk fat. Journal of Dairy Science 74: 40024012.Google Scholar
Rodríguez Osorio, M., Martín Alonso, J. J., Sanz Sampelayo, M. R., Gil Extremera, F. and Gómez García, V. 2001. N-3 polyunsaturated fatty acids and parasitism: effect of a diet supplemented with fish oil on the course of the rat trichinellosis. Annals of Nutrition and Metabolism 45: 9596.Google Scholar
Sanderson, P. 1986. A new method of analysis of feedingstuffs for the determination of crude oils and fats. In Recent advances in animal nutrition (ed. Haresign, W. and Cole, D. J. A.), pp. 7786. Butterworths, London.Google Scholar
Sanz Sampelayo, M. R., Perez, L., Martin Alonso, J. J., Amigo, L. and Boza, J. 2002. Effects of concentrates with different contents of protected fat rich in PUFAs on the performance of lactating Granadina goats. II. Milk production and composition. Small Ruminant Research 43: 141148.Google Scholar
Sanz Sampelayo, M. R., Ruiz Mariscal, I., Gil Extremera, F. and Boza, J. 1997. The effect of different concentrations of protein and fat in milk replacers on protein utilization in kid goats. Animal Science 64: 485492.Google Scholar
Schneider, P., Sklan, D., Chalupa, W. and Kronfeld, D. S. 1988. Feeding calcium salts of fatty acids to lactating cows. Journal of Dairy Science 71: 21432150.CrossRefGoogle Scholar
Shell, L. A., Dryden, F. D., Mata-Hernández, A. and Hale, W. H. 1978. Protein protected fat for ruminants. III. Digestion and performance of lambs. Journal of Animal Science 46: 13321337.Google Scholar
Statgraphics. 1991. User manual: Statistical Graphics System by Statistical Graphics Corporation. Rock-Wille, MD.Google Scholar
Steel, R. G. D. and Torrie, J. H. 1984. Principles and procedures of statistics: a biometrical approach, fourth edition. McGraw-Hill, Singapore.Google Scholar
Su, W. and Jones, P. J. H. 1993. Dietary fatty acid composition influences energy accretion in rats. Journal of Nutrition 123: 21092114.Google Scholar
Sukhija, P. S. and Palmquist, D. L. 1990. Dissociation of calcium soaps of long-chain fatty acids in rumen fluid. Journal of Dairy Science 73: 17841787.Google Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle Scholar
Zinn, R. A., Gulati, S. K., Plascencia, A. and Salinas, A. 2000. Influence of ruminal biohydrogenation on the feeding value of fat in finishing diets for feedlot cattle. Journal of Animal Science 78: 17381746.Google Scholar