Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:54:35.977Z Has data issue: false hasContentIssue false

Effects of metabolizable protein on intake and milk production of dairy cows independent of effects on ruminal digestion

Published online by Cambridge University Press:  18 August 2016

Get access

Abstract

The rôle of protein in food intake regulation is complex in ruminants. Previous research has shown that a deficiency in degradable nitrogen (N) could affect microbial activity and decrease intake. On the other hand, an increase in metabolizable protein content of the diet seems to stimulate food intake in lactating dairy cows. The aim of this experiment was to determine whether metabolizable protein supply plays a direct rôle in the stimulation of food intake. Treatments comprised two infusions of soya protein isolate (800 g/day) either into the rumen (RP) or into the duodenum (DP), which were compared with two iso-energy infusions of glucose (880 g/day) either into the rumen (RG) or into the duodenum (DG). Four ruminally and duodenally cannulated cows producing 36·5 kg/day of milk were assigned to a 4 ✕ 4 Latin-square design with periods of 4 weeks. Duodenal infusions of protein (DP) significantly increased (P < 0·05) dry-matter intake (DMI) ( +1·9 kg/day), rate of intake ( + 8·2 g DMI per min), milk yield ( + 4 kg/day), protein content ( + 2·3 g/kg) and protein yield ( +191 g/day) compared with the glucose infusion in the duodenum (DG). No significant effect was observed with ruminal infusion of protein (RP) compared with the glucose infusion in the rumen (RG). The protein infusions had no effect (P > 0·05) on the apparent digestibility of dry matter, organic matter, neutral-detergent fibre or acid-detergent fibre and also no or only small effects on ruminal fermentation variables. Plasma concentrations of most of the essential amino acids increased significantly with the duodenal infusion of protein, whereas ruminal infusion of protein had no significant effect. It is concluded that direct supply of metabolizable protein stimulates intake independently of ruminal digestion effects.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arsenos, G. and Kyriazakis, I. 1999. The continuum between preferences and aversions for flavoured foods in sheep conditioned by administration of casein doses. Animal Science 68: 605616.CrossRefGoogle Scholar
Bareille, N. 1996. Régulation de la prise alimentaire des vaches laitières en relation avec les variations des réserves lipidiques: rôle des agonistes β-adrénergiques, de l’insuline et de l’hormone de croissance. Ph. D. thesis, University of Rennes I.Google Scholar
Baumont, R., Séguier, N. and Dulphy, J.P. 1990. Rumen fill, forage palatability and alimentary behaviour in sheep. Journal of Agricultural Science, Cambridge 115: 277284.CrossRefGoogle Scholar
Broderick, G.A., Kowalczyk, T. and Satter, L.D. 1970. Milk production response to supplementation with encapsulated methionine per os or casein per abomasum. Journal of Dairy Science 53: 17141721.CrossRefGoogle ScholarPubMed
Chenost, M. 1987. Influence de la complémentation sur la valeur alimentaire et l’utilisation des mauvais foins et des pailles par les ruminants. In Les Fourrages Secs: Récolte, Traitement, Utilisation (ed. Demarquilly, C.), pp. 183198. INRA, Paris.Google Scholar
Chenost, M. and Dulphy, J.P. 1987. Amélioration de la valeur alimentaire (composition, digestibilité, ingestibilité) des mauvais foins et des pailles par les différents types de traitement. In Les Fourrages Secs: Récolte, Traitement, Utilisation (ed. Demarquilly, C.), pp. 199230. INRA, Paris.Google Scholar
Choung, J.J. and Chamberlain, D.G. 1992. Protein nutrition of dairy cows receiving grass silage diets. Effects on silage intake and milk production of postruminal supplements of casein or soya-protein isolate and the effects of intravenous infusions of a mixture of methionine, phenylalanine and tryptophan. Journal of the Science of Food and Agriculture 58: 307314.CrossRefGoogle Scholar
Choung, J.J. and Chamberlain, D.G. 1993. The effects of abomasal infusions of casein or soya-bean-protein isolate on the milk production of dairy cows in mid-lactation. British Journal of Nutrition 69: 103115.Google Scholar
Choung, J.J. and Chamberlain, D.G. 1995. Effects of abomasal infusions of sodium caseinate and of casein hydrolysates varying in the relative proportions of peptides and free amino acids on milk production in dairy cows. Journal of Dairy Research 62: 423429.Google Scholar
Clark, J.H., Spires, H.R., Derrig, R.G. and Bennink, M.R. 1977. Milk production, nitrogen utilization and glucose synthesis in lactating cows infused postruminally with sodium caseinate and glucose. Journal of Nutrition 107: 631644.Google Scholar
Conrad, H.R., Pratt, A.D. and Hibbs, J.W. 1964. Regulation of feed intake in dairy cows. I. Change in importance of physical factors with increasing digestibility. Journal of Dairy Science 47: 5462.Google Scholar
Dhiman, T.R., Cadorniga, C. and Satter, L.D. 1993. Protein and energy supplementation of high alfalfa silage diets during early lactation. Journal of Dairy Science 76: 19451959.CrossRefGoogle Scholar
Dinius, D.A. and Baumgardt, B.R. 1970. Regulation of food intake in ruminants. 6. Influence of caloric density of pelleted rations. Journal of Dairy Science 53: 311316.Google Scholar
Egan, A.R. 1965. Nutritional status and intake regulation in sheep. 2. The influence of sustained duodenal infusions of casein or urea upon voluntary intake of low protein roughages by sheep. Australian Journal of Agricultural Research 16: 452462.Google Scholar
Faverdin, P. 1992. Comparaison des différentes méthodes de prédiction des quantités ingérées. Productions Animales 5: 271282.Google Scholar
Faverdin, P. 1999. The effect of nutrients on feed intake in ruminants. Proceedings of the Nutrition Society 58: 523531.Google Scholar
Faverdin, P., Agabriel, J., Bocquier, F. and Ingrand, S. 1997. Maximiser l’ingestion de fourrages par les ruminants: maîtrise des facteurs liés aux animaux et à leur conduite. Rencontres autour des Recherches sur les Ruminants 4: 6574.Google Scholar
Faverdin, P. and Bareille, N. 1999. Lipostatic regulation of feed intake in ruminants. In Regulation of feed intake (ed. van der Heide, D., Huisman, E.A., Kanis, E. and Osse, J.W.M.), pp. 89102. CABI Publishing, Wallingford.Google Scholar
Faverdin, P., Bareille, N. and Vérité, R. 1999. Effects of rumen energy supply timing on feed intake control in lactating dairy cows. Journal of Dairy Science 82: 24432454.Google Scholar
Giger, S., Thivend, P., Sauvant, D., Dorleans, M. and Journaix, P. 1987. Etude de l’influence préalable de différentes enzymes amylolytiques sur la teneur en résidu NDF d’aliments du bétail. Annales de Zootechnie 36: 3948.CrossRefGoogle Scholar
Goering, H.K. and Van Soest, P.J. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agriculture handbook no. 379, ARS, USDA, Washington, DC.Google Scholar
Guinard, J., Rulquin, H. and Vérité, R. 1994. Effect of graded amounts of duodenal infusions of casein on mammary uptake in lactating cows. I. Major nutrients. Journal of Dairy Science 77: 22212231.Google Scholar
Ingvartsen, K.L. 1994. Models of voluntary food intake in cattle. Livestock Production Science 39: 1938.Google Scholar
Jouany, J.P. 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2: 131144.Google Scholar
Journet, M., Champredon, C., Pion, R. and Vérité, R. 1983a. Physiological basis of the protein nutrition of high producing cows: critical analysis of the allowances. Proceedings of the IVth international symposium on protein metabolism and nutrition, pp. 433447. INRA Publications, Versailles.Google Scholar
Journet, M., Faverdin, P., Rémond, B., Vérité, R., Marquis, B. and Ollier, A. 1983b. Niveau et qualité des apports azotés en début de lactation. Bulletin technique du Centre de Recherches Zootechniques et Vétérinaires de Theix, INRA 51: 717.Google Scholar
Khalili, H., Huhtanen, P., Jaakkola, S. and Varvikko, T. 1995. The effects of ruminal and duodenal casein infusion on dry matter intake of red clover silage and rumen pool size, digestion and passage kinetics of neutral detergent fibre. Annales de Zootechnie 44: 243 (abstr. ).Google Scholar
M’hamed, D., Faverdin, P. and Vérité, R. 2000. Effect of duodenal perfusion of protein on the intake of dairy cows with or without incomplete milking. Annales de Zootechnie 49: 487496.Google Scholar
Peyraud, J.L., Leliboux, S. and Vérité, R. 1997. Effet du niveau et de la nature de l’azote dégradable sur la digestion ruminale d’un régime à base d’ensilage de maïs chez la vache laitière. Reproduction, Nutrition, Development 37: 313328.CrossRefGoogle Scholar
Rae, R.C., Ingalls, J.R. and McKirdy, J.A. 1983. Response of dairy cows to formaldehyde-treated canola meal during early lactation. Canadian Journal of Animal Science 63: 905915.Google Scholar
Redman, R.G., Kellaway, R.C. and Leibholz, J. 1980. Utilization of low quality roughages: effects of urea and protein supplements of differing solubility on digesta flows, intake and growth rate of cattle eating oaten chaff. British Journal of Nutrition 44: 343354.Google Scholar
Rémond, B., Coulon, J.B., Nicloux, M. and Levieux, D. 1999. Effect of temporary once-daily milking in early lactation on milk production and nutritional status of dairy cows. Annales de Zootechnie 48: 341352.CrossRefGoogle Scholar
Rico-Gomes, M. and Faverdin, P. 2001. The protein nutrition affects intake in dairy cows: a meta-analysis. Rencontres autour des Recherches sur les Ruminants 8: 285288.Google Scholar
Rogers, J.A., Clark, J.H., Drendel, T.R. and Fahey, G.C. Jr., 1984. Milk production and nitrogen utilization by dairy cows infused postruminally with sodium caseinate, soybean meal, or cottonseed meal. Journal of Dairy Science 67: 19281935.Google Scholar
Rulquin, H. and Delaby, L. 2001. Lysine level encountered in France does not limit the response to rumen-protected methionine in dairy cows. Rencontres autour des Recherches sur les Ruminants 8: 301 (abstr. ).Google Scholar
Seymour, W.M., Polan, C.E. and Herbein, J.H. 1990. Effects of dietary protein degradability and casein or amino acid infusions on production and plasma amino acids in dairy cows. Journal of Dairy Science 73: 735748.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute. 1987. SAS/STAT user’s guide, version 6, fourth edition, volume 2. SAS Institute Inc., Cary, NC.Google Scholar
Van Soest, P.J. and Wine, R.H. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists 50: 5055.Google Scholar
Vérité, R. and Peyraud, J.L. 1989. Protein: the PDI system. In Ruminant nutrition: recommended allowances and feed tables (ed. Jarrige, R.), pp. 3347. INRA, Paris.Google Scholar
Vermorel, M. 1989. Energy: the Feed Unit systems. In Ruminant nutrition: recommended allowances and feed tables (ed. Jarrige, R.), pp. 2332. INRA, Paris.Google Scholar
Vik-Mo, L., Emery, R.S. and Huber, J.T. 1974. Milk protein production in cows abomasally infused with casein or glucose. Journal of Dairy Science 57: 869877.CrossRefGoogle ScholarPubMed
Whitelaw, F.G., Milne, J.S., Ørskov, E.R. and Smith, J.S. 1986. The nitrogen and energy metabolism of lactating cows given abomasal infusions of casein. British Journal of Nutrition 55: 537556.Google Scholar
Wurtman, R.J. 1986. Ways that foods can affect the brain. Nutrition Reviews 44: (suppl. ) 2–5.Google Scholar