Published online by Cambridge University Press: 09 March 2007
Fall-calving multiparous Angus × Hereford cows 3 to 10 years of age were stratified by age in a three by two factorial treatment arrangement to evaluate the efficacy of modifying stocking rate and supplementation strategy to manage cow body condition and production parameters over a 5-year study. Efficacy was evaluated quarterly in association with calving, breeding, weaning, and mid way between weaning and calving (i.e. in August). Three protein supplementation strategies (none, standard, strategic) were imposed across both a moderate (0·3 cows per ha) and a high (0·4 cows per ha) stocking rate. In the strategically supplemented group, protein supplement was provided to cows with a body condition score <5·5 at the quarterly evaluations. There was an effect of supplementation on pregnancy rate, which in combination with previously established culling practices resulted in different age profiles amongst supplementation strategies in years 2 to 5 (P < 0·01). Two statistical analyses were therefore conducted to dissociate the confounding effects of supplementation strategy and age. One model included the effect of stocking rate, supplementation strategy, production year, and all interactions; the second included the addition of age and its interactive effects. Stocking rate and supplementation strategy affected pregnancy rate in each of the models (P = 0·003 and P = 0·10, respectively). Standard, non-supplemented and strategically supplemented animals had estimated pregnancy rates of 0·83, 0·76, and 0·79, respectively (P = 0·10). The effects of nutrition on both calving interval and birth weight were independent of the model employed. Animals that were not supplemented had extended calving intervals (P = 0·06), but there was no effect of stocking rate (P > 0·10). Birth weight was not affected by supplementation strategy or stocking rate (P > 0·10). The lower 205-day weights of calves on a heavy compared with moderate stocking rate was independent of age (P = 0·02). However, the increased 205-day weight of calves born to strategically supplemented cows compared with those born to unsupplemented cows was only evident when data were not corrected for differences in age among groups (P = 0·03). Likewise, analyses of cow condition parameters using models without and with age resulted in different interpretations. These results suggest that strategic and standard supplementation result in similar animal performance and that the improvement in herd productivity associated with altering stocking rate and supplementation may partially be due to altered herd age dynamics.